Lecture 13: Pretraining + Transformers

Alan Ritter

(many slides from Greg Durrett)

Pretraining / ELMo

Recall: Context-dependent Embeddings

How to handle different word senses? One vector for balls

Train a neural language model to predict the next word given previous words in the sentence, use its internal representations as word vectors

Peters et al. (2018)

- Key idea: language models can allow us to form useful word representations in the same way word2vec did
- Take a powerful language model, train it on large amounts of data, then use those representations in downstream tasks
- What do we want our LM to look like?

ELMO

Peters et al. (2018)

CNN over each word => RNN

ELMO

Representation of visited (plus vectors from backwards LM)

4096-dim LSTMs w/ 512-dim projections

2048 CNN filters projected down to 512-dim

Peters et al. (2018)

How to apply ELMo?

- Take those embeddings and feed them into whatever architecture you want to use for your task
- Frozen embeddings: update the weights of your network but keep ELMo's parameters frozen
- Fine-tuning: backpropagate all the way into ELMo when training your model

Peters, Ruder, Smith (2019)

etc	:.)
	J
ls	

Results: Frozen ELMo

TASK	PREVIOUS SOTA		OUR BASELINE	ELMO + BASELINE	INCREASE (ABSOLUTE/ RELATIVE)
SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%
SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%
SRL	He et al. (2017)	81.7	81.4	84.6	3.2 / 17.2%
Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2/9.8%
NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06/21%
SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3/6.8%

 Massive improvements across 5 benchmark datasets: question answering, natural language inference, semantic role labeling (discussed later in the course), coreference resolution, named entity recognition, and sentiment analysis

How to apply ELMo?

Drotroining	Adaptation	NER SA		Nat. lang	g. inference	Semantic textual similarity		
rietranning	Auaptation	CoNLL 2003	SST-2	MNLI	SICK-E	SICK-R	MRPC	STS-B
Skip-thoughts		-	81.8	62.9	_	86.6	75.8	71.8
ELMo		91.7	91.8	79.6	86.3	86.1	76.0	75.9
		91.9	91.2	76.4	83.3	83.3	74.7	75.5
	$\Delta = \bullet - $	0.2	-0.6	-3.2	-3.3	-2.8	-1.3	-0.4

How does frozen (🐝) vs. fine-tuned (🤚) compare?

Recommendations: Pretra Any Any Any ELM Peters, Ruder, Smith (2019) BER

	Conditio	ns	Guidelines				
ain	Adapt.	Task	Guidennes				
		Any	Add many task parameters				
	٨	Any	Add minimal task parameters Hyper-parameters				
lo T	Any Any Any	Seq. / clas. Sent. pair Sent. pair	and low have similar performance use use				

Why is language modeling a good objective?

- "Impossible" problem but bigger models seem to do better and better at distributional modeling (no upper limit yet)
- Successfully predicting next words requires modeling lots of different effects in text

home comforts.

Target sentence: After my dear mother passed away ten years ago now, I became _____. Target word: lonely

LAMBADA dataset (Papernot et al., 2016): explicitly targets world knowledge and very challenging LM examples

Coreference, Winograd schema, and much more

- *Context*: My wife refused to allow me to come to Hong Kong when the plague was at its height and –" "Your wife, Johanne? You are married at last ?" Johanne grinned. "Well, when a man gets to my age, he starts to need a few

Why is language modeling a good objective?

Zhang and Bowman (2018)

Why did this take time to catch on?

- Earlier version of ELMo by the same authors in 2017, but it was only evaluated on tagging tasks, gains were 1% or less
- Required: training on lots of data, having the right architecture, significant hyperparameter tuning

Probing ELMo

- From each layer of the ELMo model, attempt to predict something: POS tags, word senses, etc.
- Higher accuracy => ELMo is capturing that thing more nicely

Model	\mathbf{F}_1
WordNet 1st Sense Baseline	65.9
Raganato et al. (2017a)	69.9
Iacobacci et al. (2016)	70.1
CoVe, First Layer	59.4
CoVe, Second Layer	64.7
biLM, First layer	67.4
biLM, Second layer	69.0

Table 5: All-words fine grained WSD F₁. For CoVe Table 6: Test set POS tagging accuracies for PTB. For and the biLM, we report scores for both the first and CoVe and the biLM, we report scores for both the first second layer biLSTMs. and second layer biLSTMs.

Model	Acc.
Collobert et al. (2011)	97.3
Ma and Hovy (2016)	97.6
Ling et al. (2015)	97.8
CoVe, First Layer	93.3
CoVe, Second Layer	92.8
biLM, First Layer	97.3
biLM, Second Layer	96.8

BERT

Each word forms a "query" which then computes attention over each word

$$\alpha_{i,j} = \operatorname{softmax}(x_i^\top x_j) \quad \text{scalar}$$

 $x'_i = \sum lpha_{i,j} x_j$ vector = sum of scalar * vector j=1

Multiple "heads" analogous to different convolutional filters. Use

$$\alpha_{k,i,j} = \operatorname{softmax}(x_i^\top W_k x_j) \quad x'_{k,i} = \sum_{j=1}^n \alpha_{k,i,j} V_k x_j$$

Vaswani et al. (2017)

Recall: Self-Attention

parameters W_k and V_k to get different attention values + transform vectors

Recall: Multi-Head Self Attention

Х

 \times

W٧

=

Recall: Transformers

- a one-hot vector

Augment word embedding with position embeddings, each dim is a sine/cosine wave of a different frequency. Closer points = higher dot products

Works essentially as well as just encoding position as Vaswani et al. (2017)

- Al2 made ELMo in spring 2018, GPT was released in summer 2018, BERT came out October 2018
- Three major changes compared to ELMo:
 - Transformers instead of LSTMs (transformers in GPT as well)
 - Bidirectional <=> Masked LM objective instead of standard LM
 - Fine-tune instead of freeze at test time

BERT

- ELMo is a unidirectional model (as is GPT): we can concatenate two unidirectional models, but is this the right thing to do?
- ELMo reprs look at each direction in isolation; BERT looks at them jointly

A stunning ballet dancer, Copeland is one of the best performers to see live.

BERT

ELMo

- "ballet dancer"
- "ballet dancer/performer"

John

visited Madagascar yesterday

BERT

How to learn a "deeply bidirectional" model? What happens if we just

visited Madagascar yesterday John

Transformer LMs have to be "onesided" (only attend to previous tokens), not what we want

Masked Language Modeling

- BERT formula: take a chunk of text, predict 15% of the tokens
 - For 80% (of the 15%), replace the input token with [MASK]
 - For 10%, replace w/random
 - For 10%, keep same

How to prevent cheating? Next word prediction fundamentally doesn't work for bidirectional models, instead do masked language modeling

Next "Sentence" Prediction

- Input: [CLS] Text chunk 1 [SEP] Text chunk 2
- 50% of the time, take the true next chunk of text, 50% of the time take a random other chunk. Predict whether the next chunk is the "true" next
- BERT objective: masked LM + next sentence prediction

BERT Architecture

- BERT Base: 12 layers, 768-dim per wordpiece token, 12 heads. Total params = 110M
- BERT Large: 24 layers, 1024-dim per wordpiece token, 16 heads. Total params = 340M
- Positional embeddings and segment embeddings, 30k word pieces
- This is the model that gets pre-trained on a large corpus

Input

Token

Segment

Position

Devlin et al. (2019)

What can BERT do?

- CLS token is used to provide classification decisions
- Sentence pair tasks (entailment): feed both sentences into BERT
- BERT can also do tagging by predicting tags at each word piece

What can BERT do?

- How does BERT model this sentence pair stuff?
- Transformers can capture interactions between the two sentences, even though the NSP objective doesn't really cause this to happen

What can BERT NOT do?

- BERT cannot generate text (at least not in an obvious way)
 - Not an autoregressive model, can do weird things like stick a [MASK] at the end of a string, fill in the mask, and repeat
- Masked language models are intended to be used primarily for "analysis" tasks

BERT Results, Extensions

Fine-tuning BERT

Fine-tune for 1-3 epochs, batch size 2-32, learning rate 2e-5 - 5e-5

(b) Single Sentence Classification Tasks: SST-2, CoLA

- Large changes to weights up here (particularly in last layer to route the right information to [CLS])
- Smaller changes to weights lower down in the transformer
- Small LR and short fine-tuning schedule mean weights don't change much
- More complex "triangular learning rate" schemes exist

Fine-tuning BERT

Pretraining	Adaptation	NER CoNLL 2003	SA SST-2	Nat. lan MNLI	g. inference SICK-E	Semantic SICK-R	textual si MRPC	milarity STS-B
Skip-thoughts		_	81.8	62.9	_	86.6	75.8	71.8
ELMo		91.7	91.8	79.6	86.3	86.1	76.0	75.9
	٨	91.9	91.2	76.4	83.3	83.3	74.7	75.5
	$\Delta = 0 - $	0.2	-0.6	-3.2	-3.3	-2.8	-1.3	-0.4
BERT-base		92.2	93.0	84.6	84.8	86.4	78.1	82.9
	٨	92.4	93.5	84.6	85.8	88.7	84.8	87.1
	$\Delta = - $	0.2	0.5	0.0	1.0	2.3	6.7	4.2

BERT is typically better if the whole network is fine-tuned, unlike ELMo

Peters, Ruder, Smith (2019)

Evaluation: GLUE

Corpus	Train	Test	Task	Metrics	Domain				
			Single-Se	entence Tasks					
CoLA SST-2	8.5k 67k	1k 1.8k	acceptability sentiment	Matthews corr. acc.	misc. movie reviews				
	Similarity and Paraphrase Tasks								
MRPC STS-B QQP	3.7k 7k 364k	1.7k 1.4k 391k	paraphrase sentence similarity paraphrase	acc./F1 Pearson/Spearman corr. acc./F1	news misc. social QA questions				
			Infere	ence Tasks					
MNLI QNLI RTE WNLI	393k 105k 2.5k 634	20k 5.4k 3k 146	NLI QA/NLI NLI coreference/NLI	matched acc./mismatched acc. acc. acc. acc.	misc. Wikipedia news, Wikipedia fiction books				

Wang et al. (2019)

Results

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Ave
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75
BERT _{BASE}	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79
BERTLARGE	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81

- Huge improvements over prior work (even compared to ELMo)
- imply sentence B), paraphrase detection

Effective at "sentence pair" tasks: textual entailment (does sentence A

Devlin et al. (2018)

- "Robustly optimized BERT" Mo Ro 160GB of data instead of 16 GB BE Dynamic masking: standard BERT uses the same MASK scheme for every epoch, RoBERTa recomputes them
- New training + more data = better performance

RoBERTa

odel	data	bsz	steps	SQuAD (v1.1/2.0)	MNLI-m	
BERTa						
with BOOKS + WIKI	16GB	8K	100K	93.6/87.3	89.0	
+ additional data (§3.2)	160GB	8K	100K	94.0/87.7	89.3	
+ pretrain longer	160GB	8K	300K	94.4/88.7	90.0	
+ pretrain even longer	160GB	8K	500K	94.6/89.4	90.2	
ERT _{LARGE}			_			
with BOOKS + WIKI	13GB	256	1 M	90.9/81.8	86.6	

Liu et al. (2019)

93.7

Factorized embedding matrix to save parameters, model contextindependent words with fewer parameters Ordinarily $|V| \times H - |V|$ is 30k-90k, H is >1000

- Now: $|V| \ge 0$ and $E \ge 0$ H E is 128 in their implementation
- Additional cross-layer parameter sharing

ALBERT

Factor into two matrices with a low-rank approximation

- This objective is more computationally efficient (trains faster) than the standard BERT objective

ELECTRA

No need to necessarily have a generative model (predicting words)

Clark et al. (2020)

- There are lots of ways to train these models!
- Key factors:
 - Big enough model
 - Big enough data
 - modeling). Needs to be a hard enough problem!

BERT/MLMs

Well-designed "self-supervised" objective (something like language

Analysis/Visualization of BERT

(1) How can we probe syntactic + semantic knowledge of BERT? What does BERT "know" in its representations?

(2) What can we learn from looking at attention heads?

(3) What can we learn about training BERT (more efficiently, etc.)?

BERTology

Rogers et al. (2020)

BERTology: Probing

(1) In general: set up some "probing" task to try to determine syntactic features from BERT's hidden states

E.g.: Words with syntactic relations have a higher impact on one another during MLM prediction

(2) What's going inside attention heads?

BERTology

Rogers et al. (2020)

What does BERT learn?

Heads on transformers learn interesting and diverse things: content heads (attend based on content), positional heads (based on position), etc.

Clark et al. (2019)

What does BERT learn?

Head 8-10

Still way worse than what supervised systems can do, but interesting that this is learned organically

Head 8-11

Head 5-4

Clark et al. (2019)

Remove 60+% of BERT's heads post-training with minimal drop in performance

DistilBERT (Sanh et al., 2019): nearly as good with half the parameters of BERT (via knowledge distillation)

Compressing BERT

(b) Evolution of accuracy on the MultiNLI-matched validation set when heads are pruned from BERT according to I_h (solid blue) and accuracy difference (dashed green).

Michel et al. (2019)

GPT/GPT2

- "ELMo with transformers" (works better than ELMo)
- Train a single unidirectional transformer LM on long contexts
- ► GPT2: trained on 40GB of text collected from upvoted links from reddit
- ▶ 1.5B parameters by far the largest of these models trained as of March 2019
- Because it's a language model, we can generate from it

OpenAl GPT/GPT2

Parameters	Layers	d_{model}
117M	12	768
345M	24	1024
762M	36	1280
1542M	48	1600

Radford et al. (2019)

OpenAl GPT2

SYSTEM PROMPT (HUMAN-WRITTEN)

MODEL COMPLETION (MACHINE-WRITTEN, SECOND TRY) Miley Cyrus was caught shoplifting from Abercrombie and Fitch on Hollywood Boulevard today.

The 19-year-old singer was caught on camera being escorted out of the store by security guards.

The singer was wearing a black hoodie with the label 'Blurred Lines' on the front and 'Fashion Police' on the back.

Scroll down for video

Shoplifting: Miley Cyrus was caught shoplifting from Abercrombie and Fitch on Hollywood Boulevard today (pictured)

The singer was wearing a black hoodie with the label 'Blurred Lines' on the front and 'Fashion Police' on the back

The singer was also wearing a pair of black-rimmed glasses, a black jacket, black jeans and black sandals.

She was carrying a pair of black and white striped gloves and a small black bag.

slide credit: OpenAl

1) How novel is the stuff being generated? (Is it just doing nearest neighbors on a large corpus?)

2) How do we understand and distill what is learned in this model?

3) How do we harness these priors for conditional generation tasks (summarization, generate a report of a basketball game, etc.)

4) Is this technology dangerous?

- authors, and headline
- Humans rank Grover-generated propaganda as more realistic than real "fake news"
- Fine-tuned Grover can detect Grover propaganda easily authors argue for releasing it for this reason
- NOTE: Not a GAN, discriminator trained separately from the generator

Grover

Sample from a large language model conditioned on a domain, date,

			Un	paired A	Accuracy	Paired Accuracy			
			(Generate	or size	Generator size			
			1.5B	355M	124M	1.5B 355M 124M			
		Chance		50.0		50.0			
Se	1.5B	Grover-Mega	92.0	98.5	99.8	97.4 100.0 100.0			
· Siz		Grover-Large	80.8	91.2	98.4	89.0 96.9 100.0			
tor	355M	BERT-Large	73.1	75.9	97.5	84.1 91.5 99.9			
Discrimina 154M	GPT2	70.1	78.0	90.3	78.8 87.0 96.8				
	GROVER-Base	70.1	80.0	89.2	77.5 88.2 95.7				
	BERT-Base	67.2	76.6	84.1	80.0 89.5 96.2				
	GPT2	66.2	71.9	83.5	72.5 79.6 89.6				
	11 M	FastText	63.8	65.6	69.7	65.9 69.0 74.4			

Zellers et al. (2019)

Pre-Training Cost (with Google/AWS)

- BERT: Base \$500, Large \$7000
- Grover-MEGA: \$25,000
- XLNet (BERT variant): \$30,000 \$60,000 (unclear)
- This is for a single pre-training run...developing new pre-training techniques may require many runs
- Fine-tuning these models can typically be done with a single GPU (but may take 1-3 days for medium-sized datasets)

<u>https://syncedreview.com/2019/06/27/the-staggering-cost-of-training-sota-ai-models/</u>

- analysis task

- have emerged
- Next time: modifications of these (BART/T5, GPT-3, etc.)

BERT-based systems are state-of-the-art for nearly every major text

Transformers + lots of data + self-supervision seems to do very well

Lots of work studying and analyzing these, but few "deep" conclusions