
Lecture 6: Neural Networks

Alan Ri5er
(many slides from Greg Durrett)



This Lecture

‣ Feedforward neural networks + backpropaga?on

‣ Neural network basics

‣ Applica?ons

‣ Neural network history

‣ Implemen?ng neural networks (if ?me)
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2008-2013: A glimmer of light…

‣ Collobert and Weston 2011: “NLP (almost) from scratch”

‣ Feedforward neural nets induce features for 
sequen?al CRFs (“neural CRF”)

‣ 2008 version was marred by bad experiments, 
claimed SOTA but wasn’t, 2011 version ?ed SOTA

‣ Socher 2011-2014: tree-structured RNNs working okay

‣ Krizhevskey et al. (2012): AlexNet for vision
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2014: Stuff starts working

‣ Sutskever et al. + Bahdanau et al.: seq2seq for neural MT (LSTMs work 
for NLP?)

‣ Kim (2014) + Kalchbrenner et al. (2014): sentence classifica?on / sen?ment 
(convnets work for NLP?)

‣ 2015: explosion of neural nets for everything under the sun

‣ Chen and Manning transi?on-based dependency parser (even feedforward 
networks work well for NLP?)
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Why didn’t they work before?
‣Datasets too small: for MT, not really be5er un?l you have 1M+ parallel 

sentences (and really need a lot more)

‣Op,miza,on not well understood: good ini?aliza?on, per-feature scaling 
+ momentum (Adagrad / Adadelta / Adam) work best out-of-the-box

‣Regulariza,on: dropout is pre5y helpful

‣Inputs: need word representa?ons to have the right con?nuous seman?cs

‣Computers not big enough: can’t run for enough itera?ons
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‣ How can we do nonlinear classifica?on? Kernels are too slow…

‣ Want to learn intermediate conjunc?ve features of the input

argmaxyw
>f(x, y)‣ Linear classifica?on:

the movie was not all that good

I[contains not & contains good]
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x1

x2

0

1 -1

0

x2
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[not]

[good] y = �2x1 � x2 + 2 tanh(x1 + x2)

I

I

the movie was not all that good
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Neural Networks

Taken from h5p://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Linear classifier Neural network
…possible because 
we transformed the 
space!
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Deep Neural Networks

Adopted from Chris Dyer

}
output of first layer

z = g(Vg(Wx+ b) + c)

z = g(Vy + c)

Input Second 
Layer

First 
Layer

“Feedforward” computa?on (not 
recurrent)

z = V(Wx+ b) + c

Check: what happens if no nonlinearity? 
More powerful than basic linear models?
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Feedforward Networks, 
Backpropaga?on
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Logis?c Regression with NNs

P (y|x) = exp(w>f(x, y))P
y0 exp(w>f(x, y0))

‣ Single scalar probability

P (y|x) = softmax
�
[w>f(x, y)]y2Y

� ‣ Compute scores for all possible 
labels at once (returns vector)

softmax(p)i =
exp(pi)P
i0 exp(pi0)

‣ soSmax: exps and normalizes a 
given vector

P (y|x) = softmax(Wf(x)) ‣ Weight vector per class; 
W is [num classes x num feats]

P (y|x) = softmax(Wg(V f(x))) ‣ Now one hidden layer
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V

n features

d hidden units

d x n matrix num_classes x d 
matrix

soSmaxWf
(x
)

z

nonlinearity 
(tanh, relu, …)

g P
(y

|x
)

P (y|x) = softmax(Wg(V f(x)))
num_classes 

probs
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‣ Gradient with respect to W

if i = i*
zj � P (y = i|x)zj

�P (y = i|x)zj

@

@Wij
L(x, i⇤) =

zj � P (y = i|x)zj

�P (y = i|x)zj otherwise

‣ Looks like logis?c regression with z as the features!

i

j

{

L(x, i⇤) = Wz · ei⇤ � log
X

j

exp(Wz) · ej

W
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Compu?ng Gradients: Backpropaga?on
z = g(V f(x))

Ac?va?ons at 
hidden layer

‣ Gradient with respect to V: apply the chain rule

err(root) = ei⇤ � P (y|x)
dim = num_classes dim = d

@L(x, i⇤)
@z

= err(z) = W>err(root)

L(x, i⇤) = Wz · ei⇤ � log
X

j

exp(Wz) · ej

[some math…]
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Backpropaga?on: Picture

V soSmaxWf
(x
)

z
g P

(y
|x
)

P (y|x) = softmax(Wg(V f(x)))

@L
@W err(root)err(z)

z

‣ Can forget everything aSer z, treat 
it as the output and keep backpropping



z = g(V f(x))

Ac?va?ons at 
hidden layer
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z = g(V f(x))

Ac?va?ons at 
hidden layer

‣ Gradient with respect to V: apply the chain rule

a = V f(x)

‣ First term: gradient of nonlinear ac?va?on func?on at a (depends on 
current value)

‣ Second term: gradient of linear func?on

‣ Straighsorward computa?on once we have err(z)

Compu?ng Gradients: Backpropaga?on
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V soSmaxWf
(x
)

z
g P

(y
|x
)

P (y|x) = softmax(Wg(V f(x)))

@L
@W err(root)@z

@V
err(z)

zf(x)
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Backpropaga?on

‣ Step 1: compute err(root) = ei⇤ � P (y|x)

‣ Step 2: compute deriva?ves of W using err(root)

‣ Step 3: compute @L(x, i⇤)
@z

= err(z) = W>err(root)

‣ Step 4: compute deriva?ves of V using err(z)

‣ Step 5+: con?nue backpropaga?on (compute err(f(x)) if necessary…)

P (y|x) = softmax(Wg(V f(x)))

(vector)

(vector)

(matrix)

(matrix)
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Backpropaga?on: Takeaways

‣ Gradients of output weights W are easy to compute — looks like 
logis?c regression with hidden layer z as feature vector

‣ Can compute deriva?ve of loss with respect to z to form an “error 
signal” for backpropaga?on

‣ Easy to update parameters based on “error signal” from next layer, 
keep pushing error signal back as backpropaga?on

‣ Need to remember the values from the forward computa?on
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NLP with Feedforward Networks

Botha et al. (2017)

…

Fed raises interest rates in order to …

f(x)
??

em
b(raises)

‣ Word embeddings for each word form input

‣ ~1000 features here — smaller feature vector 
than in sparse models, but every feature fires on 
every example

em
b(interest)

em
b(rates)‣ Weight matrix learns posi?on-dependent 

processing of the words

previous word

curr word

next word

other words, feats, etc.

‣ Part-of-speech tagging with FFNNs



NLP with Feedforward Networks

‣ Hidden layer mixes these 
different signals and learns 
feature conjunc?ons

Botha et al. (2017)



NLP with Feedforward Networks
‣ Mul?lingual tagging results:

Botha et al. (2017)

‣ Gillick used LSTMs; this is smaller, faster, and be5er



Sen?ment Analysis
‣ Deep Averaging Networks: feedforward neural network on average of 

word embeddings from input

Iyyer et al. (2015)



Sen?ment Analysis

{

{
Bag-of-words

Tree RNNs / 
CNNS / LSTMS

Wang and 
Manning (2012)

Kim (2014)

Iyyer et al. (2015)
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Computa?on Graphs

‣ Compu?ng gradients is hard!

‣ Automa?c differen?a?on: instrument code to keep track of deriva?ves

y = x * x (y,dy) = (x * x, 2 * x * dx)
codegen

‣ Computa?on is now something we need to reason about symbolically

‣ Use a library like Pytorch or Tensorflow. This class: Pytorch



Computa?on Graphs in Pytorch

P (y|x) = softmax(Wg(V f(x)))

class FFNN(nn.Module):
    def __init__(self, inp, hid, out):
        super(FFNN, self).__init__()
        self.V = nn.Linear(inp, hid)
        self.g = nn.Tanh()
        self.W = nn.Linear(hid, out)
        self.softmax = nn.Softmax(dim=0)

    def forward(self, x):
        return self.softmax(self.W(self.g(self.V(x))))

‣ Define forward pass for
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Computa?on Graphs in Pytorch

P (y|x) = softmax(Wg(V f(x)))

ffnn = FFNN()

loss.backward()

probs = ffnn.forward(input)
loss = torch.neg(torch.log(probs)).dot(gold_label)

optimizer.step()

def make_update(input, gold_label):

ffnn.zero_grad() # clear gradient variables

ei*: one-hot vector  
of the label  
(e.g., [0, 1, 0])
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Training a Model
Define a computa?on graph

For each epoch:

Compute loss on batch

For each batch of data:

Decode test set

Autograd to compute gradients and take step
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Batching

‣ Batching data gives speedups due to more efficient matrix opera?ons

‣ Need to make the computa?on graph process a batch at the same ?me

probs = ffnn.forward(input) # [batch_size, num_classes]
loss = torch.sum(torch.neg(torch.log(probs)).dot(gold_label))

...

‣ Batch sizes from 1-100 oSen work well

def make_update(input, gold_label)

# input is [batch_size, num_feats]  
# gold_label is [batch_size, num_classes]

...


