Lecture 6: Neural Networks

Alan Ritter

(many slides from Greg Durrett)

- Neural network history
- Neural network basics
- Feedforward neural networks + backpropagation
- Applications
- Implementing neural networks (if time)

This Lecture

History: NN "dark ages"

Convnets: applied to MNIST by LeCun in 1998

History: NN "dark ages"

Convnets: applied to MNIST by LeCun in 1998

LSTMs: Hochreiter and Schmidhuber (1997)

History: NN "dark ages"

History: NN "dark ages"

Convnets: applied to MNIST by LeCun in 1998

LSTMs: Hochreiter and Schmidhuber (1997)

Henderson (2003): neural shift-reduce parser, not SOTA

- Collobert and Weston 2011: "NLP (almost) from scratch"
 Feedforward neural nets induce features for
 - Feedforward neural nets induce sequential CRFs ("neural CRF")
 - 2008 version was marred by bad experiments, claimed SOTA but wasn't, 2011 version tied SOTA

Input Window			/	word (of
Text	cat	\mathbf{sat}	on	the	r
Feature 1	w_1^1	w_2^1			1
Feature K	w_1^K	w_2^K	•••		ı
Lookup Table					
$LT_{W^1} \longrightarrow$					
:					
$LT_{W^K} \longrightarrow$					
	_	(conca	t	
Linear					
$M^1 \times \odot \longrightarrow$					Π
	~		n_{hu}^1		
HardTanh					
\frown \sim					
Linear					
$M^2 \times \odot \checkmark$					
		2	= #1	ags	

- Collobert and Weston 2011: "NLP (almost) from scratch"
 Feedforward neural nets induce features for
 - Feedforward neural nets induce sequential CRFs ("neural CRF")
 - 2008 version was marred by bad experiments, claimed SOTA but wasn't, 2011 version tied SOTA
- Krizhevskey et al. (2012): AlexNet for vision

Input Window			/	word (of
Text Feature 1 :	$\det_{w_1^1}$	${\operatorname{sat}}\ w_2^1$	on 	the	n U
Feature K	w_1^K	w_2^K	••••		ı
Lookup Table					
$LT_{W^1} \longrightarrow$					
$LT_{W^K} \longrightarrow$					
Lincor	_	(conca	t	_
$M^1 \times \odot \checkmark$			n_{hu}^1		
HardTanh					
$\frown \sim$)		
$\begin{array}{c} \text{Linear} \\ M^2 \times \odot \checkmark \end{array}$				ags	

- Collobert and Weston 2011: "NLP (almost) from scratch"
 Feedforward neural nets induce features for
 - Feedforward neural nets induce sequential CRFs ("neural CRF")
 - 2008 version was marred by bad experiments, claimed SOTA but wasn't, 2011 version tied SOTA
- Krizhevskey et al. (2012): AlexNet for vision
- Socher 2011-2014: tree-structured RNNs working okay

(convnets work for NLP?)

Kim (2014) + Kalchbrenner et al. (2014): sentence classification / sentiment

- (convnets work for NLP?)
- for NLP?)

Kim (2014) + Kalchbrenner et al. (2014): sentence classification / sentiment

Sutskever et al. + Bahdanau et al.: seq2seq for neural MT (LSTMs work

- (convnets work for NLP?)
- Sutskever et al. + Bahdanau et al.: seq2seq for neural MT (LSTMs work for NLP?)
- Chen and Manning transition-based dependency parser (even feedforward) networks work well for NLP?)

Kim (2014) + Kalchbrenner et al. (2014): sentence classification / sentiment

- (convnets work for NLP?)
- Sutskever et al. + Bahdanau et al.: seq2seq for neural MT (LSTMs work for NLP?)
- Chen and Manning transition-based dependency parser (even feedforward) networks work well for NLP?)
- 2015: explosion of neural nets for everything under the sun

Kim (2014) + Kalchbrenner et al. (2014): sentence classification / sentiment

sentences (and really need a lot more)

Datasets too small: for MT, not really better until you have 1M+ parallel

- Datasets too small: for MT, not really better until you have 1M+ parallel sentences (and really need a lot more)
- Optimization not well understood: good initialization, per-feature scaling + momentum (Adagrad / Adadelta / Adam) work best out-of-the-box

- Datasets too small: for MT, not really better until you have 1M+ parallel sentences (and really need a lot more)
- Optimization not well understood: good initialization, per-feature scaling + momentum (Adagrad / Adadelta / Adam) work best out-of-the-box
 - Regularization: dropout is pretty helpful

- Datasets too small: for MT, not really better until you have 1M+ parallel sentences (and really need a lot more)
- Optimization not well understood: good initialization, per-feature scaling + momentum (Adagrad / Adadelta / Adam) work best out-of-the-box
 - Regularization: dropout is pretty helpful
 - Computers not big enough: can't run for enough iterations

- Datasets too small: for MT, not really better until you have 1M+ parallel sentences (and really need a lot more)
- Optimization not well understood: good initialization, per-feature scaling + momentum (Adagrad / Adadelta / Adam) work best out-of-the-box
 - Regularization: dropout is pretty helpful
 - Computers not big enough: can't run for enough iterations
- Inputs: need word representations to have the right continuous semantics

Neural Net Basics

Linear classification: $\operatorname{argmax}_y w^\top f(x, y)$

- Linear classification: $\operatorname{argmax}_{y} w^{\top} f(x, y)$
- How can we do nonlinear classification? Kernels are too slow...

- Linear classification: $\operatorname{argmax}_{y} w^{\top} f(x, y)$
- How can we do nonlinear classification? Kernels are too slow...
- Want to learn intermediate conjunctive features of the input

- Linear classification: $\operatorname{argmax}_{y} w^{\top} f(x, y)$
- How can we do nonlinear classification? Kernels are too slow...
- Want to learn intermediate conjunctive features of the input

the movie was **not** all that **good**

- Linear classification: $\operatorname{argmax}_{y} w^{\top} f(x, y)$
- How can we do nonlinear classification? Kernels are too slow...
- Want to learn intermediate conjunctive features of the input
 - the movie was **not** all that **good**
 - [[contains *not* & contains *good*]

- Let's see how we can use neural nets to learn a simple nonlinear function
- Inputs

Output

- Let's see how we can use neural nets to learn a simple nonlinear function
- Inputs x_1, x_2 (generally $\mathbf{x} = (x_1, \ldots, x_m)$)
- Output y (generally $\mathbf{y} = (y_1, \ldots, y_n)$)

- Let's see how we can use neural nets to learn a simple nonlinear function
- Inputs x_1, x_2 (generally $\mathbf{x} = (x_1, \ldots, x_m)$)
- ► Output y (generally $\mathbf{y} = (y_1, \ldots, y_n)$)

 $x_2 \quad y = x_1 \text{ XOR } x_2$ x_1 () $\left(\right)$ 1

- Let's see how we can use neural nets to learn a simple nonlinear function
- Inputs x_1, x_2 (generally $\mathbf{x} = (x_1, \ldots, x_m)$)
- Output y (generally $\mathbf{y} = (y_1, \ldots, y_n)$)

 $x_2 \quad y = x_1 \text{ XOR } x_2$ x_1 ()()1

- Let's see how we can use neural nets to learn a simple nonlinear function
- Inputs x_1, x_2 (generally $\mathbf{x} = (x_1, \ldots, x_m)$)
- Output y (generally $\mathbf{y} = (y_1, \ldots, y_n)$)

Neural Networks: XOR

 $y = a_1 x_1 + a_2 x_2$

 $y = a_1 x_1 + a_2 x_2$

 $y = a_1 x_1 + a_2 x_2$

 $y = a_1 x_1 + a_2 x_2$

 $y = a_1 x_1 + a_2 x_2$

 $y = a_1 x_1 + a_2 x_2$

Neural Networks: XOR

 $y = a_1 x_1 + a_2 x_2 + a_3 \tanh(x_1 + x_2)$

Neural Networks: XOR

$y = a_1 x_1 + a_2 x_2 + a_3 \tanh(x_1 + x_2)$ "or"

Neural Networks: XOR

 $y = a_1 x_1 + a_2 x_2 + a_3 \tanh(x_1 + x_2)$ "or"

(looks like action potential in neuron)

Neural Networks: XOR

 $y = a_1 x_1 + a_2 x_2 + a_3 \tanh(x_1 + x_2)$

Neural Networks: XOR

 $y = a_1 x_1 + a_2 x_2 + a_3 \tanh(x_1 + x_2)$

 $y = -x_1 - x_2 + 2\tanh(x_1 + x_2)$ "or"

Neural Networks: XOR

the movie was not all that good

the movie was **not** all that **good**

Neural Networks: XOR

 $y = g(\mathbf{w} \cdot \mathbf{x} + b)$ $\mathbf{y} = g(\mathbf{W}\mathbf{x} + \mathbf{b})$ Nonlinear transformation

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Neural Networks

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Linear classifier

Neural Networks

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Linear classifier

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Neural Networks

Neural network

Linear classifier

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Neural Networks

Neural network

...possible because we transformed the space!

W \boldsymbol{z} U \boldsymbol{x} ••• -

y = g(Wx + b)

y = g(Wx + b)

y = g(Wx + b) $\mathbf{z} = g(\mathbf{V}\mathbf{y} + \mathbf{c})$

y = g(Wx + b) $\mathbf{z} = g(\mathbf{V}\mathbf{y} + \mathbf{c})$ $\mathbf{z} = g(\mathbf{V}g(\mathbf{W}\mathbf{x} + \mathbf{b}) + \mathbf{c})$ output of first layer

"Feedforward" computation (not recurrent)

$$y = g(Wx + b)$$

$$z = g(Vy + c)$$

$$z = g(Vg(Wx + b) + c)$$

output of first layer

"Feedforward" computation (not recurrent)

Check: what happens if no nonlinearity? More powerful than basic linear models?

$$z = V(Wx + b) + c$$

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Feedforward Networks, Backpropagation

 $P(y|\mathbf{x}) = \frac{\exp(w^{\top}f(\mathbf{x}, y))}{\sum_{y'} \exp(w^{\top}f(\mathbf{x}, y'))}$

Single scalar probability

 $P(y|\mathbf{x}) = \frac{\exp(w^{\top}f(\mathbf{x}, y))}{\sum_{y'} \exp(w^{\top}f(\mathbf{x}, y'))}$

 $P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}\left([w \mid f(\mathbf{x}, y)]_{y \in \mathcal{Y}}\right)$

Single scalar probability

$$P(y|\mathbf{x}) = \frac{\exp(w^{\top}f(\mathbf{x}, y))}{\sum_{y'} \exp(w^{\top}f(\mathbf{x}, y'))}$$

 $P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}\left([w^{\top}f(\mathbf{x}, y)]\right)$

 $\operatorname{softmax}(p)_i = \frac{\exp(p)_i}{\sum_{i'} \exp(p)_i}$

Single scalar probability

$$)]_{y \in \mathcal{Y}}$$
$$(p_i)$$
$$(p_i)$$
$$P(y|\mathbf{x}) = \frac{\exp(w^{\top}f(\mathbf{x}, y))}{\sum_{y'} \exp(w^{\top}f(\mathbf{x}, y'))}$$

 $P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}\left([w^{\top}f(\mathbf{x}, y)]_{y \in \mathcal{Y}}\right)$

softmax $(p)_i = \frac{\exp(p_i)}{\sum_{i'} \exp(p_{i'})}$

Single scalar probability

Compute scores for all possible labels at once (returns vector)

$$P(y|\mathbf{x}) = \frac{\exp(w^{\top}f(\mathbf{x}, y))}{\sum_{y'} \exp(w^{\top}f(\mathbf{x}, y'))}$$

 $P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}\left([w^{\top}f(\mathbf{x}, y)]_{y \in \mathcal{Y}}\right)$

- Single scalar probability
- Compute scores for all possible labels at once (returns vector)
- softmax $(p)_i = \frac{\exp(p_i)}{\sum_{i'} \exp(p_{i'})}$ softmax: exps and normalizes a given vector

$$P(y|\mathbf{x}) = \frac{\exp(w^{\top}f(\mathbf{x}, y))}{\sum_{y'} \exp(w^{\top}f(\mathbf{x}, y'))}$$

 $P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}\left([w^{\top}f(\mathbf{x}, y)]_{y \in \mathcal{Y}}\right)$

$$\operatorname{softmax}(p)_i = \frac{\exp}{\sum_{i'} \exp}$$

 $P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wf(\mathbf{x}))$

- Single scalar probability
- Compute scores for all possible labels at once (returns vector)
- (p_i) $\operatorname{xp}(p_{i'})$
- softmax: exps and normalizes a given vector
- Weight vector per class; W is [num classes x num feats]

$$P(y|\mathbf{x}) = \frac{\exp(w^{\top} f(\mathbf{x}, y))}{\sum_{y'} \exp(w^{\top} f(\mathbf{x}, y'))}$$

 $P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}\left([w^{\top}f(\mathbf{x}, y)]_{y \in \mathcal{Y}}\right)$

$$\operatorname{softmax}(p)_i = \frac{\exp}{\sum_{i'} \exp}$$

 $P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wf(\mathbf{x}))$

 $P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$

- Single scalar probability
- Compute scores for all possible labels at once (returns vector)
- (p_i) $\exp(p_{i'})$
- softmax: exps and normalizes a given vector
- Weight vector per class; W is [num classes x num feats]
- Now one hidden layer

 $P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$

 $P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$

X

n features

- d hidden units
 - \mathbf{Z}

num_classes x d

 $P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(W\mathbf{z})$ $\mathbf{z} = g(Vf(\mathbf{x}))$

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(W\mathbf{z})$$

Maximize log likelihood of training data

$$\mathcal{L}(\mathbf{x}, i^*) = \log P(y = i^* | \mathbf{x}) =$$

 $\mathbf{z} = g(Vf(\mathbf{x}))$

 $= \log (\operatorname{softmax}(W\mathbf{z}) \cdot e_{i^*})$

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(W\mathbf{z})$$

Maximize log likelihood of training data

$$\mathcal{L}(\mathbf{x}, i^*) = \log P(y = i^* | \mathbf{x}) =$$

- i*: index of the gold label
- e_i : 1 in the *i*th row, zero elsewhere. Dot by this = select *i*th index

 $\mathbf{z} = g(Vf(\mathbf{x}))$

 $= \log (\operatorname{softmax}(W\mathbf{z}) \cdot e_{i^*})$

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(W\mathbf{z})$$

Maximize log likelihood of training data

$$\mathcal{L}(\mathbf{x}, i^*) = \log P(y = i^* | \mathbf{x}) =$$

- i*: index of the gold label
- e_i : 1 in the *i*th row, zero elsewhere. Dot by this = select *i*th index

$$\mathcal{L}(\mathbf{x}, i^*) = W\mathbf{z} \cdot e_{i^*} - \log \sum_{i \in \mathcal{K}} V_i \mathbf{x} \cdot e_$$

 $\mathbf{z} = g(Vf(\mathbf{x}))$

 $= \log (\operatorname{softmax}(W\mathbf{z}) \cdot e_{i^*})$

 $\sum \exp(W\mathbf{z}) \cdot e_j$

i

 $\mathcal{L}(\mathbf{x}, i^*) = W\mathbf{z} \cdot e_{i^*} - \log \sum \exp(W\mathbf{z}) \cdot e_j$

 $\mathcal{L}(\mathbf{x}, i^*) = W\mathbf{z} \cdot e_{i^*} - \log \sum \exp(W\mathbf{z}) \cdot e_j$ i

Gradient with respect to W

$$\mathcal{L}(\mathbf{x}, i^*) = W\mathbf{z} \cdot e_{i^*} - \log \sum_{i \in \mathcal{K}} V_{i^*} - \log \sum_{i \in \mathcal{K}} V_{i^*}$$

Gradient with respect to W

$$\frac{\partial}{\partial W_{ij}} \mathcal{L}(\mathbf{x}, i^*) = \begin{cases} \mathbf{z}_j - P(y = i | \mathbf{x}) \\ -P(y = i | \mathbf{x}) \mathbf{z}_j \end{cases}$$

 $\sum_{j} \exp(W\mathbf{z}) \cdot e_j$

\mathbf{z}_j if $i = i^*$

otherwise

$$\mathcal{L}(\mathbf{x}, i^*) = W\mathbf{z} \cdot e_{i^*} - \log \sum_{i \in \mathcal{K}} V_{i^*} - \log \sum_{i \in \mathcal{K}} V_{i^*}$$

Gradient with respect to W

$$\frac{\partial}{\partial W_{ij}} \mathcal{L}(\mathbf{x}, i^*) = \begin{cases} \mathbf{z}_j - P(y = i | \mathbf{x}) \\ -P(y = i | \mathbf{x}) \mathbf{z}_j \end{cases}$$

 $\sum_{j} \exp(W\mathbf{z}) \cdot e_j$ W i () \mathbf{z}_j if $i = i^*$ $\mathbf{z}_j - P(y = i | \mathbf{x}) \mathbf{z}_j$ otherwise $-P(y=i|\mathbf{x})\mathbf{z}_j$

$$\mathcal{L}(\mathbf{x}, i^*) = W\mathbf{z} \cdot e_{i^*} - \log \sum_{i \in \mathcal{K}} \sum_{i \in \mathcal{K}} \frac{1}{i^*} - \log \sum_{i \in \mathcal{K}} \frac{1}{i^*} \sum_{i \in \mathcal{K}} \frac{1}{i^*} \frac{1}{i^*}$$

Gradient with respect to W

$$\frac{\partial}{\partial W_{ij}} \mathcal{L}(\mathbf{x}, i^*) = \begin{cases} \mathbf{z}_j - P(y = i | \mathbf{x}) \\ -P(y = i | \mathbf{x}) \mathbf{z}_j \end{cases}$$

Looks like logistic regression with z as the features!

 $\mathcal{L}(\mathbf{x}, i^*) = W\mathbf{z} \cdot e_{i^*} - \log \sum \exp(W\mathbf{z}) \cdot e_j$

$$\mathcal{L}(\mathbf{x}, i^*) = W\mathbf{z} \cdot e_{i^*} - \log \sum_{i \in \mathcal{K}} \frac{1}{2} \sum_{i \in \mathcal{K}$$

Gradient with respect to V: apply the chain rule

- $\sum_{j} \exp(W\mathbf{z}) \cdot e_j$

$$\mathcal{L}(\mathbf{x}, i^*) = W\mathbf{z} \cdot e_{i^*} - \log \sum_{i \in \mathcal{I}} \frac{1}{2} \sum_{i \in \mathcal{I}$$

Gradient with respect to V: apply the chain rule

- $\sum_{i} \exp(W\mathbf{z}) \cdot e_{j}$

$$\mathcal{L}(\mathbf{x}, i^*) = W\mathbf{z} \cdot e_{i^*} - \log \sum_{i \in \mathcal{I}} \frac{1}{2} \sum_{i \in \mathcal{I}$$

Gradient with respect to V: apply the chain rule

- $\sum_{i} \exp(W\mathbf{z}) \cdot e_{j}$

$$\mathcal{L}(\mathbf{x}, i^*) = W\mathbf{z} \cdot e_{i^*} - \log \sum_j \exp(W\mathbf{z}) \cdot e_j$$

Gradient with respect to V: apply the chain rule

 $\mathbf{z} = g(Vf(\mathbf{x}))$ Activations at hidden layer

[some math...]

$$\frac{\partial \mathcal{L}(\mathbf{x}, i^*)}{\partial \mathbf{z}} = err(\mathbf{z}) = W^{\top} err(\text{root})$$
$$\dim = d$$

 $P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$

 $P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$

 $P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$

Can forget everything after z, treat it as the output and keep backpropping

$$\mathcal{L}(\mathbf{x}, i^*) = W\mathbf{z} \cdot e_{i^*} - \log \sum_{j=1}^{\infty} e_{j=1}$$

Gradient with respect to V: apply the chain rule

$$\frac{\partial \mathcal{L}(\mathbf{x}, i^*)}{\partial V_{ij}} = \frac{\partial \mathcal{L}(\mathbf{x}, i^*)}{\partial \mathbf{z}} \frac{\partial \mathbf{z}}{V_{ij}}$$

$\sum_{j=1}^{m} \exp(W\mathbf{z} \cdot e_j)$

$$\mathcal{L}(\mathbf{x}, i^*) = W\mathbf{z} \cdot e_{i^*} - \log \sum_{i=1}^{\infty} \frac{1}{i^*}$$

Gradient with respect to V: apply the chain rule

$\sum_{j=1}^{m} \exp(W\mathbf{z} \cdot e_j)$

$$\mathcal{L}(\mathbf{x}, i^*) = W\mathbf{z} \cdot e_{i^*} - \log \sum_{i=1}^{\infty} \frac{1}{i^{i+1}}$$

Gradient with respect to V: apply the chain rule

- m
- $\sum_{j=1}^{\infty} \exp(W\mathbf{z} \cdot e_j)$
- $\mathbf{z} = g(Vf(\mathbf{x}))$ Activations at hidden layer

$$\mathcal{L}(\mathbf{x}, i^*) = W\mathbf{z} \cdot e_{i^*} - \log \sum_{i=1}^{\infty} \frac{1}{i^{i+1}}$$

Gradient with respect to V: apply the chain rule

- \mathcal{M}
 - $\sum \exp(W\mathbf{z} \cdot e_j)$
- $\mathbf{z} = g(Vf(\mathbf{x}))$ Activations at hidden layer

$$\mathcal{L}(\mathbf{x}, i^*) = W\mathbf{z} \cdot e_{i^*} - \log \sum_{i=1}^{\infty} \frac{1}{i^{i+1}}$$

Gradient with respect to V: apply the chain rule

First term: gradient of nonlinear activation function at a (depends on current value)

- m
 - $\sum \exp(W\mathbf{z} \cdot e_j)$
- $\mathbf{z} = g(Vf(\mathbf{x}))$ Activations at hidden layer

$$\frac{\partial \mathbf{z}}{V_{ij}} = \frac{\partial g(\mathbf{a})}{\partial \mathbf{a}} \frac{\partial \mathbf{a}}{\partial V_{ij}} \quad \mathbf{a} = Vf$$

$$\mathcal{L}(\mathbf{x}, i^*) = W\mathbf{z} \cdot e_{i^*} - \log \sum_{j=1}^{\infty} \frac{1}{j} = 1$$

Gradient with respect to V: apply the chain rule

- First term: gradient of nonlinear activation function at *a* (depends on current value)
- Second term: gradient of linear function

- ${m}$
 - $\sum_{j=1}^{N} \exp(W\mathbf{z} \cdot e_j)$

$\mathbf{z} = g(Vf(\mathbf{x}))$ Activations at hidden layer

$$\frac{\partial \mathbf{z}}{V_{ij}} = \frac{\partial g(\mathbf{a})}{\partial \mathbf{a}} \frac{\partial \mathbf{a}}{\partial V_{ij}} \quad \mathbf{a} = V$$

$$\mathcal{L}(\mathbf{x}, i^*) = W\mathbf{z} \cdot e_{i^*} - \log \sum_{j=1}^{\infty} \frac{1}{j} = 1$$

Gradient with respect to V: apply the chain rule

- First term: gradient of nonlinear activation function at *a* (depends on current value)
- Second term: gradient of linear function
- Straightforward computation once we have err(z)

- ${m}$
 - $\sum_{j=1}^{N} \exp(W\mathbf{z} \cdot e_j)$

$\mathbf{z} = g(Vf(\mathbf{x}))$ Activations at hidden layer

$$\frac{\partial \mathbf{z}}{V_{ij}} = \frac{\partial g(\mathbf{a})}{\partial \mathbf{a}} \frac{\partial \mathbf{a}}{\partial V_{ij}} \quad \mathbf{a} = V$$

Backpropagation: Picture

 $P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$

Backpropagation: Picture

 $P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$

$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$

 $P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$

• Step 1: compute $err(root) = e_{i^*} - P(\mathbf{y}|\mathbf{x})$ (vector)

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf$$

- Step 1: compute $err(root) = e_{i^*} P(\mathbf{y}|\mathbf{x})$ (vector)
- Step 2: compute derivatives of W using err(root) (matrix)

 $\mathbf{f}(\mathbf{x})))$

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf$$

- Step 1: compute $err(root) = e_{i^*} P(\mathbf{y}|\mathbf{x})$ (vector)
- Step 2: compute derivatives of W using err(root) (matrix)
- Step 3: compute

$$\frac{\partial \mathcal{L}(\mathbf{x}, i^*)}{\partial \mathbf{z}} = err$$

 $f(\mathbf{x})))$

 $r(\mathbf{z}) = W^{\top} err(root)$ (vector)

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf$$

- Step 1: compute $err(root) = e_{i^*} P(\mathbf{y}|\mathbf{x})$ (vector)
- Step 2: compute derivatives of W using err(root) (matrix)
- ► Step 3: compute $\frac{\partial \mathcal{L}(\mathbf{x}, i^*)}{\partial \mathbf{z}} = err(\mathbf{z}) = W^{\top}err(\text{root})$ (vector) Step 4: compute derivatives of V using err(z) (matrix)

 $\mathbf{f}(\mathbf{X})))$

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf$$

- Step 1: compute $err(root) = e_{i^*} P(\mathbf{y}|\mathbf{x})$ (vector)
- Step 2: compute derivatives of W using err(root) (matrix)
- Step 3: compute $\frac{\partial \mathcal{L}(\mathbf{x}, i^*)}{\partial \mathbf{z}} = err(\mathbf{z}) = W^{\top} err(root)$ (vector)
- Step 4: compute derivatives of V using err(z) (matrix)
- Step 5+: continue backpropagation (compute err(f(x)) if necessary...)

 $f(\mathbf{x})))$

Gradients of output weights W are easy to compute — looks like logistic regression with hidden layer z as feature vector

- Gradients of output weights W are easy to compute looks like logistic regression with hidden layer z as feature vector
- Can compute derivative of loss with respect to z to form an "error signal" for backpropagation

- Gradients of output weights W are easy to compute looks like logistic regression with hidden layer z as feature vector
- Can compute derivative of loss with respect to z to form an "error signal" for backpropagation
- Easy to update parameters based on "error signal" from next layer, keep pushing error signal back as backpropagation

- Gradients of output weights W are easy to compute looks like logistic regression with hidden layer z as feature vector
- Can compute derivative of loss with respect to z to form an "error signal" for backpropagation
- Easy to update parameters based on "error signal" from next layer, keep pushing error signal back as backpropagation
- Need to remember the values from the forward computation

Applications

Part-of-speech tagging with FFNNs

Part-of-speech tagging with FFNNs ??

Fed raises interest rates in order to ...

Part-of-speech tagging with FFNNs

<u>?</u>?

Fed raises interest rates in order to ...

Part-of-speech tagging with FFNNs

<u>?</u>?

Fed raises interest rates in order to ...

Word embeddings for each word form input

Part-of-speech tagging with FFNNs

<u>?</u>?

Fed raises interest rates in order to ...

Word embeddings for each word form input

Part-of-speech tagging with FFNNs

??

Fed raises interest rates in order to ...

- Word embeddings for each word form input
- ~1000 features here smaller feature vector than in sparse models, but every feature fires on every example

Part-of-speech tagging with FFNNs

??

Fed raises interest rates in order to ...

- Word embeddings for each word form input
- ~1000 features here smaller feature vector than in sparse models, but every feature fires on every example
- Weight matrix learns position-dependent processing of the words

There was no <u>queue</u> at the ...

Hidden layer mixes these different signals and learns feature conjunctions

Multilingual tagging results:

Model	Acc.	Wts.	MB	Ops.
Gillick et al. (2016)	95.06	900k	-	6.63m
Small FF	94.76	241k	0.6	0.27m
+Clusters	95.56	261k	1.0	0.31m
$\frac{1}{2}$ Dim.	95.39	143k	0.7	0.18m

Gillick used LSTMs; this is smaller, faster, and better

Sentiment Analysis

word embeddings from input

Deep Averaging Networks: feedforward neural network on average of

$$h_2 = f(W_2 \cdot h_1 + b_2)$$

$$h_1 = f(W_1 \cdot av + b_1)$$

Sentiment Analysis

	Model	RT	SST fine	SST bin	IMDB	Time (s)	
	DAN-ROOT DAN-RAND DAN	77.3 80.3	46.9 45.4 47.7	85.7 83.2 86 3	 88.8 89.4	31 136	Ivver et al (20
Bag-of-words	NBOW-RAND NBOW BiNB NDSVM bi	76.2 79.0	42.3 43.6 41.9	81.4 83.6 83.1	88.9 89.0	91 91 	Wang and
Tree RNNs / CNNS / LSTMS	RecNN* RecNTN* DRecNN	77.7	43.2 45.7 49.8	82.4 85.4 86.6	91.2	 431	Manning (201
	TreeLSTM DCNN* PVEC* CNN-MC WRRBM*	 81.1	50.6 48.5 48.7 47.4	86.9 86.9 87.8 88.1	89.4 92.6 89.2	2,452	Kim (2014)

Coreference Resolution

Feedforward networks identify coreference arcs

Clark and Manning (2015), Wiseman et al. (2015)

Coreference Resolution

Feedforward networks identify coreference arcs

Clark and Manning (2015), Wiseman et al. (2015)

Coreference Resolution

Feedforward networks identify coreference arcs

Implementation Details

Computation Graphs

Computing gradients is hard!

Computation Graphs

- Computing gradients is hard!

Automatic differentiation: instrument code to keep track of derivatives

Computation Graphs

- Computing gradients is hard!

Automatic differentiation: instrument code to keep track of derivatives
- Computing gradients is hard!

$$y = x * x \longrightarrow (y, dy) = codegen$$

Computation Graphs

Automatic differentiation: instrument code to keep track of derivatives

(x * x, 2 * x * dx)

Computation is now something we need to reason about symbolically

- Computing gradients is hard!

$$y = x * x - (y, dy) = codegen$$

- Use a library like Pytorch or Tensorflow. This class: Pytorch

Computation Graphs

Automatic differentiation: instrument code to keep track of derivatives

(x * x, 2 * x * dx)

Computation is now something we need to reason about symbolically

• Define forward pass for $P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$

class FFNN(nn.Module): def init (self, inp, hid, out): super(FFNN, self). init () self.V = nn.Linear(inp, hid) self.g = nn.Tanh()self.W = nn.Linear(hid, out) self.softmax = nn.Softmax(dim=0)

> def forward(self, x): return self.softmax(self.W(self.g(self.V(x))))

$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$

 $P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$

ffnn = FFNN()

 $P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$

ffnn = FFNN()def make update(input, gold label):

 $P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$ of the label

ffnn = FFNN()
def make_update(input, gold_label):

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf$$

ei*: one-hot vector $(\mathbf{x})))$ of the label (e.g., [0, 1, 0]) ffnn = FFNN()def make update(input, gold label): ffnn.zero grad() # clear gradient variables

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf$$

ffnn = FFNN()
def make_update(input, gold_label):
 ffnn.zero_grad() # clear gradient variables
 probs = ffnn.forward(input)

ei*: one-hot vector
(x))) of the label
 (e.g., [0, 1, 0])
 (old_label):

 $P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$ of the label

ffnn = FFNN()def make update(input, gold label): ffnn.zero grad() # clear gradient variables probs = ffnn.forward(input) loss = torch.neg(torch.log(probs)).dot(gold label)

ei*: one-hot vector (e.g., [0, 1, 0])

 $P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$ of the label

ffnn = FFNN()def make update(input, gold label): ffnn.zero grad() # clear gradient variables probs = ffnn.forward(input) loss = torch.neg(torch.log(probs)).dot(gold label) loss.backward()

ei*: one-hot vector (e.g., [0, 1, 0])

ei*: one-hot vector $P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$ of the label (e.g., [0, 1, 0]) ffnn = FFNN()def make update(input, gold label): ffnn.zero grad() # clear gradient variables probs = ffnn.forward(input) loss = torch.neg(torch.log(probs)).dot(gold label) loss.backward() optimizer.step()

Define a computation graph

Define a computation graph

For each epoch:

Define a computation graph For each epoch: For each batch of data:

Define a computation graph For each epoch: For each batch of data: Compute loss on batch

Define a computation graph For each epoch: For each batch of data: Compute loss on batch Autograd to compute gradients and take step

Define a computation graph For each epoch: For each batch of data: Compute loss on batch Autograd to compute gradients and take step Decode test set

Batching

Batching data gives speedups due to more efficient matrix operations

Batching

Batching data gives speedups due to more efficient matrix operations

Need to make the computation graph process a batch at the same time

input is [batch size, num feats] # gold label is [batch size, num classes] def make update(input, gold label)

Batching

Batching data gives speedups due to more efficient matrix operations

Need to make the computation graph process a batch at the same time

- Need to make the computation graph process a batch at the same time
- # input is [batch size, num feats] # gold label is [batch size, num classes] def make update(input, gold label)
 - • probs = ffnn.forward(input) # [batch size, num classes]

Batching

Batching data gives speedups due to more efficient matrix operations

• • •

input is [batch size, num feats] # gold label is [batch size, num classes] def make update(input, gold label)

probs = ffnn.forward(input) # [batch size, num classes] loss = torch.sum(torch.neg(torch.log(probs)).dot(gold label))

Batching

Batching data gives speedups due to more efficient matrix operations

Need to make the computation graph process a batch at the same time

input is [batch size, num feats] # gold label is [batch size, num classes] def make update(input, gold label)

• • •

probs = ffnn.forward(input) # [batch size, num classes] loss = torch.sum(torch.neg(torch.log(probs)).dot(gold label))

Batch sizes from 1-100 often work well

Batching

Batching data gives speedups due to more efficient matrix operations

Need to make the computation graph process a batch at the same time

