
Lecture 6: Neural Networks

Alan Ri5er
(many slides from Greg Durrett)

This Lecture

‣ Feedforward neural networks + backpropaga?on

‣ Neural network basics

‣ Applica?ons

‣ Neural network history

‣ Implemen?ng neural networks (if ?me)

History: NN “dark ages”

History: NN “dark ages”
‣ Convnets: applied to MNIST by LeCun in 1998

History: NN “dark ages”
‣ Convnets: applied to MNIST by LeCun in 1998

‣ LSTMs: Hochreiter and Schmidhuber (1997)

History: NN “dark ages”
‣ Convnets: applied to MNIST by LeCun in 1998

‣ LSTMs: Hochreiter and Schmidhuber (1997)

‣ Henderson (2003): neural shiS-reduce parser, not SOTA

2008-2013: A glimmer of light…

2008-2013: A glimmer of light…

‣ Collobert and Weston 2011: “NLP (almost) from scratch”

‣ Feedforward neural nets induce features for
sequen?al CRFs (“neural CRF”)

‣ 2008 version was marred by bad experiments,
claimed SOTA but wasn’t, 2011 version ?ed SOTA

2008-2013: A glimmer of light…

‣ Collobert and Weston 2011: “NLP (almost) from scratch”

‣ Feedforward neural nets induce features for
sequen?al CRFs (“neural CRF”)

‣ 2008 version was marred by bad experiments,
claimed SOTA but wasn’t, 2011 version ?ed SOTA

‣ Krizhevskey et al. (2012): AlexNet for vision

2008-2013: A glimmer of light…

‣ Collobert and Weston 2011: “NLP (almost) from scratch”

‣ Feedforward neural nets induce features for
sequen?al CRFs (“neural CRF”)

‣ 2008 version was marred by bad experiments,
claimed SOTA but wasn’t, 2011 version ?ed SOTA

‣ Socher 2011-2014: tree-structured RNNs working okay

‣ Krizhevskey et al. (2012): AlexNet for vision

2014: Stuff starts working

2014: Stuff starts working
‣ Kim (2014) + Kalchbrenner et al. (2014): sentence classifica?on / sen?ment

(convnets work for NLP?)

2014: Stuff starts working

‣ Sutskever et al. + Bahdanau et al.: seq2seq for neural MT (LSTMs work
for NLP?)

‣ Kim (2014) + Kalchbrenner et al. (2014): sentence classifica?on / sen?ment
(convnets work for NLP?)

2014: Stuff starts working

‣ Sutskever et al. + Bahdanau et al.: seq2seq for neural MT (LSTMs work
for NLP?)

‣ Kim (2014) + Kalchbrenner et al. (2014): sentence classifica?on / sen?ment
(convnets work for NLP?)

‣ Chen and Manning transi?on-based dependency parser (even feedforward
networks work well for NLP?)

2014: Stuff starts working

‣ Sutskever et al. + Bahdanau et al.: seq2seq for neural MT (LSTMs work
for NLP?)

‣ Kim (2014) + Kalchbrenner et al. (2014): sentence classifica?on / sen?ment
(convnets work for NLP?)

‣ 2015: explosion of neural nets for everything under the sun

‣ Chen and Manning transi?on-based dependency parser (even feedforward
networks work well for NLP?)

Why didn’t they work before?

Why didn’t they work before?
‣Datasets too small: for MT, not really be5er un?l you have 1M+ parallel

sentences (and really need a lot more)

Why didn’t they work before?
‣Datasets too small: for MT, not really be5er un?l you have 1M+ parallel

sentences (and really need a lot more)

‣Op,miza,on not well understood: good ini?aliza?on, per-feature scaling
+ momentum (Adagrad / Adadelta / Adam) work best out-of-the-box

Why didn’t they work before?
‣Datasets too small: for MT, not really be5er un?l you have 1M+ parallel

sentences (and really need a lot more)

‣Op,miza,on not well understood: good ini?aliza?on, per-feature scaling
+ momentum (Adagrad / Adadelta / Adam) work best out-of-the-box

‣Regulariza,on: dropout is pre5y helpful

Why didn’t they work before?
‣Datasets too small: for MT, not really be5er un?l you have 1M+ parallel

sentences (and really need a lot more)

‣Op,miza,on not well understood: good ini?aliza?on, per-feature scaling
+ momentum (Adagrad / Adadelta / Adam) work best out-of-the-box

‣Regulariza,on: dropout is pre5y helpful

‣Computers not big enough: can’t run for enough itera?ons

Why didn’t they work before?
‣Datasets too small: for MT, not really be5er un?l you have 1M+ parallel

sentences (and really need a lot more)

‣Op,miza,on not well understood: good ini?aliza?on, per-feature scaling
+ momentum (Adagrad / Adadelta / Adam) work best out-of-the-box

‣Regulariza,on: dropout is pre5y helpful

‣Inputs: need word representa?ons to have the right con?nuous seman?cs

‣Computers not big enough: can’t run for enough itera?ons

Neural Net Basics

Neural Networks
argmaxyw

>f(x, y)‣ Linear classifica?on:

Neural Networks

‣ How can we do nonlinear classifica?on? Kernels are too slow…

argmaxyw
>f(x, y)‣ Linear classifica?on:

Neural Networks

‣ How can we do nonlinear classifica?on? Kernels are too slow…

‣ Want to learn intermediate conjunc?ve features of the input

argmaxyw
>f(x, y)‣ Linear classifica?on:

Neural Networks

‣ How can we do nonlinear classifica?on? Kernels are too slow…

‣ Want to learn intermediate conjunc?ve features of the input

argmaxyw
>f(x, y)‣ Linear classifica?on:

the movie was not all that good

Neural Networks

‣ How can we do nonlinear classifica?on? Kernels are too slow…

‣ Want to learn intermediate conjunc?ve features of the input

argmaxyw
>f(x, y)‣ Linear classifica?on:

the movie was not all that good

I[contains not & contains good]

Neural Networks: XOR
‣ Let’s see how we can use neural nets

to learn a simple nonlinear func?on

‣ Inputs

‣ Output

Neural Networks: XOR

x1, x2

(generally x = (x1, . . . , xm))

y

(generally y = (y1, . . . , yn))

‣ Let’s see how we can use neural nets
to learn a simple nonlinear func?on

‣ Inputs

‣ Output

Neural Networks: XOR

x1 x2

1 1

1
1
0
0 0

0

x1, x2

(generally x = (x1, . . . , xm))

y

(generally y = (y1, . . . , yn)) y = x1 XOR x2

‣ Let’s see how we can use neural nets
to learn a simple nonlinear func?on

‣ Inputs

‣ Output

Neural Networks: XOR

x1 x2

1 1
1
11

1
0
0 0

0
0

0

x1, x2

(generally x = (x1, . . . , xm))

y

(generally y = (y1, . . . , yn)) y = x1 XOR x2

‣ Let’s see how we can use neural nets
to learn a simple nonlinear func?on

‣ Inputs

‣ Output

Neural Networks: XOR

x1

x2

x1 x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1

x1, x2

(generally x = (x1, . . . , xm))

y

(generally y = (y1, . . . , yn)) y = x1 XOR x2

‣ Let’s see how we can use neural nets
to learn a simple nonlinear func?on

‣ Inputs

‣ Output

Neural Networks: XOR

x1

x2

x1 x2 x1 XOR x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1

Neural Networks: XOR

x1

x2

x1 x2 x1 XOR x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1

y = a1x1 + a2x2

Neural Networks: XOR

x1

x2

x1 x2 x1 XOR x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1

y = a1x1 + a2x2

Neural Networks: XOR

x1

x2

x1 x2 x1 XOR x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1

y = a1x1 + a2x2

Neural Networks: XOR

x1

x2

x1 x2 x1 XOR x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1

y = a1x1 + a2x2

Neural Networks: XOR

x1

x2

x1 x2 x1 XOR x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1

y = a1x1 + a2x2

Neural Networks: XOR

x1

x2

x1 x2 x1 XOR x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1

y = a1x1 + a2x2 X

Neural Networks: XOR

x1

x2

x1 x2 x1 XOR x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1

y = a1x1 + a2x2 X
y = a1x1 + a2x2 + a3 tanh(x1 + x2)

Neural Networks: XOR

x1

x2

x1 x2 x1 XOR x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1
“or”

y = a1x1 + a2x2 X
y = a1x1 + a2x2 + a3 tanh(x1 + x2)

Neural Networks: XOR

x1

x2

x1 x2 x1 XOR x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1
“or”

y = a1x1 + a2x2 X
y = a1x1 + a2x2 + a3 tanh(x1 + x2)

(looks like action
potential in neuron)

Neural Networks: XOR
y = a1x1 + a2x2

x1

x2

x1 x2 x1 XOR x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1

X
y = a1x1 + a2x2 + a3 tanh(x1 + x2)

Neural Networks: XOR
y = a1x1 + a2x2

x1

x2

x1 x2 x1 XOR x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1

X
y = a1x1 + a2x2 + a3 tanh(x1 + x2)

“or”
y = �x1 � x2 + 2 tanh(x1 + x2)

Neural Networks: XOR
y = a1x1 + a2x2

x1

x2

x1 x2 x1 XOR x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1

X
y = a1x1 + a2x2 + a3 tanh(x1 + x2)

x2

x1

“or”
y = �x1 � x2 + 2 tanh(x1 + x2)

Neural Networks: XOR

Neural Networks: XOR

x1

x2

0

1 -1

0
[not]

[good]

I

I

the movie was not all that good

Neural Networks: XOR

x1

x2

0

1 -1

0

x2

x1

[not]

[good] y = �2x1 � x2 + 2 tanh(x1 + x2)

I

I

the movie was not all that good

Neural Networks

Neural Networks

Linear model: y = w · x+ b

Neural Networks

Nonlinear
transformation

Linear model: y = w · x+ b

y = g(w · x+ b)
y = g(Wx+ b)

Neural Networks

Warp
space

Nonlinear
transformation

Linear model: y = w · x+ b

y = g(w · x+ b)
y = g(Wx+ b)

Neural Networks

Warp
space

ShiftNonlinear
transformation

Linear model: y = w · x+ b

y = g(w · x+ b)
y = g(Wx+ b)

Neural Networks

Taken from h5p://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Warp
space

ShiftNonlinear
transformation

Linear model: y = w · x+ b

y = g(w · x+ b)
y = g(Wx+ b)

Neural Networks

Neural Networks

Taken from h5p://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Neural Networks

Taken from h5p://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Linear classifier

Neural Networks

Taken from h5p://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Linear classifier Neural network

Neural Networks

Taken from h5p://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Linear classifier Neural network
…possible because
we transformed the
space!

Deep Neural Networks

Adopted from Chris Dyer

Deep Neural Networks

Adopted from Chris Dyer

Input Second
Layer

First
Layer

Deep Neural Networks

Adopted from Chris Dyer

z = g(Vy + c)

Input Second
Layer

First
Layer

Deep Neural Networks

Adopted from Chris Dyer

}
output of first layer

z = g(Vg(Wx+ b) + c)

z = g(Vy + c)

Input Second
Layer

First
Layer

Deep Neural Networks

Adopted from Chris Dyer

}
output of first layer

z = g(Vg(Wx+ b) + c)

z = g(Vy + c)

Input Second
Layer

First
Layer

“Feedforward” computa?on (not
recurrent)

Deep Neural Networks

Adopted from Chris Dyer

}
output of first layer

z = g(Vg(Wx+ b) + c)

z = g(Vy + c)

Input Second
Layer

First
Layer

“Feedforward” computa?on (not
recurrent)

z = V(Wx+ b) + c

Check: what happens if no nonlinearity?
More powerful than basic linear models?

Deep Neural Networks

Taken from h5p://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Deep Neural Networks

Taken from h5p://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Feedforward Networks,
Backpropaga?on

Logis?c Regression with NNs

Logis?c Regression with NNs

P (y|x) = exp(w>f(x, y))P
y0 exp(w>f(x, y0))

‣ Single scalar probability

Logis?c Regression with NNs

P (y|x) = exp(w>f(x, y))P
y0 exp(w>f(x, y0))

‣ Single scalar probability

P (y|x) = softmax
�
[w>f(x, y)]y2Y

�

Logis?c Regression with NNs

P (y|x) = exp(w>f(x, y))P
y0 exp(w>f(x, y0))

‣ Single scalar probability

P (y|x) = softmax
�
[w>f(x, y)]y2Y

�

softmax(p)i =
exp(pi)P
i0 exp(pi0)

Logis?c Regression with NNs

P (y|x) = exp(w>f(x, y))P
y0 exp(w>f(x, y0))

‣ Single scalar probability

P (y|x) = softmax
�
[w>f(x, y)]y2Y

� ‣ Compute scores for all possible
labels at once (returns vector)

softmax(p)i =
exp(pi)P
i0 exp(pi0)

Logis?c Regression with NNs

P (y|x) = exp(w>f(x, y))P
y0 exp(w>f(x, y0))

‣ Single scalar probability

P (y|x) = softmax
�
[w>f(x, y)]y2Y

� ‣ Compute scores for all possible
labels at once (returns vector)

softmax(p)i =
exp(pi)P
i0 exp(pi0)

‣ soSmax: exps and normalizes a
given vector

Logis?c Regression with NNs

P (y|x) = exp(w>f(x, y))P
y0 exp(w>f(x, y0))

‣ Single scalar probability

P (y|x) = softmax
�
[w>f(x, y)]y2Y

� ‣ Compute scores for all possible
labels at once (returns vector)

softmax(p)i =
exp(pi)P
i0 exp(pi0)

‣ soSmax: exps and normalizes a
given vector

P (y|x) = softmax(Wf(x)) ‣ Weight vector per class;
W is [num classes x num feats]

Logis?c Regression with NNs

P (y|x) = exp(w>f(x, y))P
y0 exp(w>f(x, y0))

‣ Single scalar probability

P (y|x) = softmax
�
[w>f(x, y)]y2Y

� ‣ Compute scores for all possible
labels at once (returns vector)

softmax(p)i =
exp(pi)P
i0 exp(pi0)

‣ soSmax: exps and normalizes a
given vector

P (y|x) = softmax(Wf(x)) ‣ Weight vector per class;
W is [num classes x num feats]

P (y|x) = softmax(Wg(V f(x))) ‣ Now one hidden layer

Neural Networks for Classifica?on

P (y|x) = softmax(Wg(V f(x)))

Neural Networks for Classifica?on

n features

f
(x
)

P (y|x) = softmax(Wg(V f(x)))

Neural Networks for Classifica?on

V

n features

f
(x
)

P (y|x) = softmax(Wg(V f(x)))

Neural Networks for Classifica?on

V

n features
d x n matrix

f
(x
)

P (y|x) = softmax(Wg(V f(x)))

Neural Networks for Classifica?on

V

n features
d x n matrix

f
(x
)

nonlinearity
(tanh, relu, …)

g

P (y|x) = softmax(Wg(V f(x)))

Neural Networks for Classifica?on

V

n features

d hidden units

d x n matrix

f
(x
)

z

nonlinearity
(tanh, relu, …)

g

P (y|x) = softmax(Wg(V f(x)))

Neural Networks for Classifica?on

V

n features

d hidden units

d x n matrix num_classes x d
matrix

Wf
(x
)

z

nonlinearity
(tanh, relu, …)

g

P (y|x) = softmax(Wg(V f(x)))

Neural Networks for Classifica?on

V

n features

d hidden units

d x n matrix num_classes x d
matrix

soSmaxWf
(x
)

z

nonlinearity
(tanh, relu, …)

g

P (y|x) = softmax(Wg(V f(x)))

Neural Networks for Classifica?on

V

n features

d hidden units

d x n matrix num_classes x d
matrix

soSmaxWf
(x
)

z

nonlinearity
(tanh, relu, …)

g P
(y

|x
)

P (y|x) = softmax(Wg(V f(x)))
num_classes

probs

Training Neural Networks

z = g(V f(x))P (y|x) = softmax(Wz)

Training Neural Networks

‣ Maximize log likelihood of training data

z = g(V f(x))P (y|x) = softmax(Wz)

L(x, i⇤) = logP (y = i⇤|x) = log (softmax(Wz) · ei⇤)

Training Neural Networks

‣ Maximize log likelihood of training data

‣ i*: index of the gold label

‣ ei: 1 in the ith row, zero elsewhere. Dot by this = select ith index

z = g(V f(x))P (y|x) = softmax(Wz)

L(x, i⇤) = logP (y = i⇤|x) = log (softmax(Wz) · ei⇤)

Training Neural Networks

‣ Maximize log likelihood of training data

‣ i*: index of the gold label

‣ ei: 1 in the ith row, zero elsewhere. Dot by this = select ith index

z = g(V f(x))P (y|x) = softmax(Wz)

L(x, i⇤) = Wz · ei⇤ � log
X

j

exp(Wz) · ej

L(x, i⇤) = logP (y = i⇤|x) = log (softmax(Wz) · ei⇤)

Compu?ng Gradients

L(x, i⇤) = Wz · ei⇤ � log
X

j

exp(Wz) · ej

Compu?ng Gradients

‣ Gradient with respect to W

L(x, i⇤) = Wz · ei⇤ � log
X

j

exp(Wz) · ej

Compu?ng Gradients

‣ Gradient with respect to W

if i = i*@

@Wij
L(x, i⇤) =

zj � P (y = i|x)zj

�P (y = i|x)zj otherwise{

L(x, i⇤) = Wz · ei⇤ � log
X

j

exp(Wz) · ej

Compu?ng Gradients

‣ Gradient with respect to W

if i = i*
zj � P (y = i|x)zj

�P (y = i|x)zj

@

@Wij
L(x, i⇤) =

zj � P (y = i|x)zj

�P (y = i|x)zj otherwise

i

j

{

L(x, i⇤) = Wz · ei⇤ � log
X

j

exp(Wz) · ej

W

Compu?ng Gradients

‣ Gradient with respect to W

if i = i*
zj � P (y = i|x)zj

�P (y = i|x)zj

@

@Wij
L(x, i⇤) =

zj � P (y = i|x)zj

�P (y = i|x)zj otherwise

‣ Looks like logis?c regression with z as the features!

i

j

{

L(x, i⇤) = Wz · ei⇤ � log
X

j

exp(Wz) · ej

W

Neural Networks for Classifica?on

V soSmaxWf
(x
)

z
g P

(y
|x
)

P (y|x) = softmax(Wg(V f(x)))

Neural Networks for Classifica?on

V soSmaxWf
(x
)

z
g P

(y
|x
)

P (y|x) = softmax(Wg(V f(x)))

@L
@Wz

Compu?ng Gradients: Backpropaga?on
z = g(V f(x))

Ac?va?ons at
hidden layer

L(x, i⇤) = Wz · ei⇤ � log
X

j

exp(Wz) · ej

Compu?ng Gradients: Backpropaga?on
z = g(V f(x))

Ac?va?ons at
hidden layer

‣ Gradient with respect to V: apply the chain rule

L(x, i⇤) = Wz · ei⇤ � log
X

j

exp(Wz) · ej

@L(x, i⇤)
@Vij

=
@L(x, i⇤)

@z

@z

@Vij

Compu?ng Gradients: Backpropaga?on
z = g(V f(x))

Ac?va?ons at
hidden layer

‣ Gradient with respect to V: apply the chain rule

L(x, i⇤) = Wz · ei⇤ � log
X

j

exp(Wz) · ej

@L(x, i⇤)
@Vij

=
@L(x, i⇤)

@z

@z

@Vij

Compu?ng Gradients: Backpropaga?on
z = g(V f(x))

Ac?va?ons at
hidden layer

‣ Gradient with respect to V: apply the chain rule

err(root) = ei⇤ � P (y|x)
dim = num_classes

L(x, i⇤) = Wz · ei⇤ � log
X

j

exp(Wz) · ej

@L(x, i⇤)
@Vij

=
@L(x, i⇤)

@z

@z

@Vij

Compu?ng Gradients: Backpropaga?on
z = g(V f(x))

Ac?va?ons at
hidden layer

‣ Gradient with respect to V: apply the chain rule

err(root) = ei⇤ � P (y|x)
dim = num_classes dim = d

@L(x, i⇤)
@z

= err(z) = W>err(root)

L(x, i⇤) = Wz · ei⇤ � log
X

j

exp(Wz) · ej

[some math…]

@L(x, i⇤)
@Vij

=
@L(x, i⇤)

@z

@z

@Vij

Backpropaga?on: Picture

V soSmaxWf
(x
)

z
g P

(y
|x
)

P (y|x) = softmax(Wg(V f(x)))

@L
@Wz

Backpropaga?on: Picture

V soSmaxWf
(x
)

z
g P

(y
|x
)

P (y|x) = softmax(Wg(V f(x)))

@L
@W err(root)err(z)

z

Backpropaga?on: Picture

V soSmaxWf
(x
)

z
g P

(y
|x
)

P (y|x) = softmax(Wg(V f(x)))

@L
@W err(root)err(z)

z

Backpropaga?on: Picture

V soSmaxWf
(x
)

z
g P

(y
|x
)

P (y|x) = softmax(Wg(V f(x)))

@L
@W err(root)err(z)

z

‣ Can forget everything aSer z, treat
it as the output and keep backpropping

z = g(V f(x))

Ac?va?ons at
hidden layer

‣ Gradient with respect to V: apply the chain rule

Compu?ng Gradients: Backpropaga?on

@L(x, i⇤)
@Vij

=
@L(x, i⇤)

@z

@z

Vij

L(x, i⇤) = Wz · ei⇤ � log
mX

j=1

exp(Wz · ej)

z = g(V f(x))

Ac?va?ons at
hidden layer

‣ Gradient with respect to V: apply the chain rule

Compu?ng Gradients: Backpropaga?on

@L(x, i⇤)
@Vij

=
@L(x, i⇤)

@z

@z

Vij

L(x, i⇤) = Wz · ei⇤ � log
mX

j=1

exp(Wz · ej)

z = g(V f(x))

Ac?va?ons at
hidden layer

‣ Gradient with respect to V: apply the chain rule

a = V f(x)

Compu?ng Gradients: Backpropaga?on

@L(x, i⇤)
@Vij

=
@L(x, i⇤)

@z

@z

Vij

@z

Vij
=

@g(a)

@a

@a

@Vij

L(x, i⇤) = Wz · ei⇤ � log
mX

j=1

exp(Wz · ej)

z = g(V f(x))

Ac?va?ons at
hidden layer

‣ Gradient with respect to V: apply the chain rule

a = V f(x)

Compu?ng Gradients: Backpropaga?on

@L(x, i⇤)
@Vij

=
@L(x, i⇤)

@z

@z

Vij

@z

Vij
=

@g(a)

@a

@a

@Vij

L(x, i⇤) = Wz · ei⇤ � log
mX

j=1

exp(Wz · ej)

z = g(V f(x))

Ac?va?ons at
hidden layer

‣ Gradient with respect to V: apply the chain rule

a = V f(x)

‣ First term: gradient of nonlinear ac?va?on func?on at a (depends on
current value)

Compu?ng Gradients: Backpropaga?on

@L(x, i⇤)
@Vij

=
@L(x, i⇤)

@z

@z

Vij

@z

Vij
=

@g(a)

@a

@a

@Vij

L(x, i⇤) = Wz · ei⇤ � log
mX

j=1

exp(Wz · ej)

z = g(V f(x))

Ac?va?ons at
hidden layer

‣ Gradient with respect to V: apply the chain rule

a = V f(x)

‣ First term: gradient of nonlinear ac?va?on func?on at a (depends on
current value)

‣ Second term: gradient of linear func?on

Compu?ng Gradients: Backpropaga?on

@L(x, i⇤)
@Vij

=
@L(x, i⇤)

@z

@z

Vij

@z

Vij
=

@g(a)

@a

@a

@Vij

L(x, i⇤) = Wz · ei⇤ � log
mX

j=1

exp(Wz · ej)

z = g(V f(x))

Ac?va?ons at
hidden layer

‣ Gradient with respect to V: apply the chain rule

a = V f(x)

‣ First term: gradient of nonlinear ac?va?on func?on at a (depends on
current value)

‣ Second term: gradient of linear func?on

‣ Straighsorward computa?on once we have err(z)

Compu?ng Gradients: Backpropaga?on

@L(x, i⇤)
@Vij

=
@L(x, i⇤)

@z

@z

Vij

@z

Vij
=

@g(a)

@a

@a

@Vij

L(x, i⇤) = Wz · ei⇤ � log
mX

j=1

exp(Wz · ej)

Backpropaga?on: Picture

V soSmaxWf
(x
)

z
g P

(y
|x
)

P (y|x) = softmax(Wg(V f(x)))

@L
@W err(root)err(z)

z

Backpropaga?on: Picture

V soSmaxWf
(x
)

z
g P

(y
|x
)

P (y|x) = softmax(Wg(V f(x)))

@L
@W err(root)@z

@V
err(z)

zf(x)

Backpropaga?on

P (y|x) = softmax(Wg(V f(x)))

Backpropaga?on

‣ Step 1: compute err(root) = ei⇤ � P (y|x)

P (y|x) = softmax(Wg(V f(x)))

(vector)

Backpropaga?on

‣ Step 1: compute err(root) = ei⇤ � P (y|x)

‣ Step 2: compute deriva?ves of W using err(root)

P (y|x) = softmax(Wg(V f(x)))

(vector)

(matrix)

Backpropaga?on

‣ Step 1: compute err(root) = ei⇤ � P (y|x)

‣ Step 2: compute deriva?ves of W using err(root)

‣ Step 3: compute @L(x, i⇤)
@z

= err(z) = W>err(root)

P (y|x) = softmax(Wg(V f(x)))

(vector)

(vector)

(matrix)

Backpropaga?on

‣ Step 1: compute err(root) = ei⇤ � P (y|x)

‣ Step 2: compute deriva?ves of W using err(root)

‣ Step 3: compute @L(x, i⇤)
@z

= err(z) = W>err(root)

‣ Step 4: compute deriva?ves of V using err(z)

P (y|x) = softmax(Wg(V f(x)))

(vector)

(vector)

(matrix)

(matrix)

Backpropaga?on

‣ Step 1: compute err(root) = ei⇤ � P (y|x)

‣ Step 2: compute deriva?ves of W using err(root)

‣ Step 3: compute @L(x, i⇤)
@z

= err(z) = W>err(root)

‣ Step 4: compute deriva?ves of V using err(z)

‣ Step 5+: con?nue backpropaga?on (compute err(f(x)) if necessary…)

P (y|x) = softmax(Wg(V f(x)))

(vector)

(vector)

(matrix)

(matrix)

Backpropaga?on: Takeaways

Backpropaga?on: Takeaways

‣ Gradients of output weights W are easy to compute — looks like
logis?c regression with hidden layer z as feature vector

Backpropaga?on: Takeaways

‣ Gradients of output weights W are easy to compute — looks like
logis?c regression with hidden layer z as feature vector

‣ Can compute deriva?ve of loss with respect to z to form an “error
signal” for backpropaga?on

Backpropaga?on: Takeaways

‣ Gradients of output weights W are easy to compute — looks like
logis?c regression with hidden layer z as feature vector

‣ Can compute deriva?ve of loss with respect to z to form an “error
signal” for backpropaga?on

‣ Easy to update parameters based on “error signal” from next layer,
keep pushing error signal back as backpropaga?on

Backpropaga?on: Takeaways

‣ Gradients of output weights W are easy to compute — looks like
logis?c regression with hidden layer z as feature vector

‣ Can compute deriva?ve of loss with respect to z to form an “error
signal” for backpropaga?on

‣ Easy to update parameters based on “error signal” from next layer,
keep pushing error signal back as backpropaga?on

‣ Need to remember the values from the forward computa?on

Applica?ons

NLP with Feedforward Networks

Botha et al. (2017)

‣ Part-of-speech tagging with FFNNs

NLP with Feedforward Networks

Botha et al. (2017)

Fed raises interest rates in order to …

??
‣ Part-of-speech tagging with FFNNs

NLP with Feedforward Networks

Botha et al. (2017)

Fed raises interest rates in order to …

??
‣ Part-of-speech tagging with FFNNs

NLP with Feedforward Networks

Botha et al. (2017)

Fed raises interest rates in order to …

??

‣ Word embeddings for each word form input

‣ Part-of-speech tagging with FFNNs

NLP with Feedforward Networks

Botha et al. (2017)

…

Fed raises interest rates in order to …

f(x)
??

em
b(raises)

‣ Word embeddings for each word form input em
b(interest)

em
b(rates)

previous word

curr word

next word

other words, feats, etc.

‣ Part-of-speech tagging with FFNNs

NLP with Feedforward Networks

Botha et al. (2017)

…

Fed raises interest rates in order to …

f(x)
??

em
b(raises)

‣ Word embeddings for each word form input

‣ ~1000 features here — smaller feature vector
than in sparse models, but every feature fires on
every example

em
b(interest)

em
b(rates)

previous word

curr word

next word

other words, feats, etc.

‣ Part-of-speech tagging with FFNNs

NLP with Feedforward Networks

Botha et al. (2017)

…

Fed raises interest rates in order to …

f(x)
??

em
b(raises)

‣ Word embeddings for each word form input

‣ ~1000 features here — smaller feature vector
than in sparse models, but every feature fires on
every example

em
b(interest)

em
b(rates)‣ Weight matrix learns posi?on-dependent

processing of the words

previous word

curr word

next word

other words, feats, etc.

‣ Part-of-speech tagging with FFNNs

NLP with Feedforward Networks

‣ Hidden layer mixes these
different signals and learns
feature conjunc?ons

Botha et al. (2017)

NLP with Feedforward Networks
‣ Mul?lingual tagging results:

Botha et al. (2017)

‣ Gillick used LSTMs; this is smaller, faster, and be5er

Sen?ment Analysis
‣ Deep Averaging Networks: feedforward neural network on average of

word embeddings from input

Iyyer et al. (2015)

Sen?ment Analysis

{

{
Bag-of-words

Tree RNNs /
CNNS / LSTMS

Wang and
Manning (2012)

Kim (2014)

Iyyer et al. (2015)

Coreference Resolu?on
‣ Feedforward networks iden?fy coreference arcs

Clark and Manning (2015), Wiseman et al. (2015)

Coreference Resolu?on
‣ Feedforward networks iden?fy coreference arcs

Clark and Manning (2015), Wiseman et al. (2015)

President Obama signed…

He later gave a speech…

?

Coreference Resolu?on
‣ Feedforward networks iden?fy coreference arcs

Clark and Manning (2015), Wiseman et al. (2015)

President Obama signed…

He later gave a speech…

?

Implementa?on Details

Computa?on Graphs

‣ Compu?ng gradients is hard!

Computa?on Graphs

‣ Compu?ng gradients is hard!

‣ Automa?c differen?a?on: instrument code to keep track of deriva?ves

Computa?on Graphs

‣ Compu?ng gradients is hard!

‣ Automa?c differen?a?on: instrument code to keep track of deriva?ves

y = x * x (y,dy) = (x * x, 2 * x * dx)
codegen

Computa?on Graphs

‣ Compu?ng gradients is hard!

‣ Automa?c differen?a?on: instrument code to keep track of deriva?ves

y = x * x (y,dy) = (x * x, 2 * x * dx)
codegen

‣ Computa?on is now something we need to reason about symbolically

Computa?on Graphs

‣ Compu?ng gradients is hard!

‣ Automa?c differen?a?on: instrument code to keep track of deriva?ves

y = x * x (y,dy) = (x * x, 2 * x * dx)
codegen

‣ Computa?on is now something we need to reason about symbolically

‣ Use a library like Pytorch or Tensorflow. This class: Pytorch

Computa?on Graphs in Pytorch

P (y|x) = softmax(Wg(V f(x)))

class FFNN(nn.Module):
 def __init__(self, inp, hid, out):
 super(FFNN, self).__init__()
 self.V = nn.Linear(inp, hid)
 self.g = nn.Tanh()
 self.W = nn.Linear(hid, out)
 self.softmax = nn.Softmax(dim=0)

 def forward(self, x):
 return self.softmax(self.W(self.g(self.V(x))))

‣ Define forward pass for

Computa?on Graphs in Pytorch

P (y|x) = softmax(Wg(V f(x)))

Computa?on Graphs in Pytorch

P (y|x) = softmax(Wg(V f(x)))

ffnn = FFNN()

Computa?on Graphs in Pytorch

P (y|x) = softmax(Wg(V f(x)))

ffnn = FFNN()
def make_update(input, gold_label):

Computa?on Graphs in Pytorch

P (y|x) = softmax(Wg(V f(x)))

ffnn = FFNN()
def make_update(input, gold_label):

ei*: one-hot vector  
of the label  
(e.g., [0, 1, 0])

Computa?on Graphs in Pytorch

P (y|x) = softmax(Wg(V f(x)))

ffnn = FFNN()
def make_update(input, gold_label):

ffnn.zero_grad() # clear gradient variables

ei*: one-hot vector  
of the label  
(e.g., [0, 1, 0])

Computa?on Graphs in Pytorch

P (y|x) = softmax(Wg(V f(x)))

ffnn = FFNN()

probs = ffnn.forward(input)

def make_update(input, gold_label):

ffnn.zero_grad() # clear gradient variables

ei*: one-hot vector  
of the label  
(e.g., [0, 1, 0])

Computa?on Graphs in Pytorch

P (y|x) = softmax(Wg(V f(x)))

ffnn = FFNN()

probs = ffnn.forward(input)
loss = torch.neg(torch.log(probs)).dot(gold_label)

def make_update(input, gold_label):

ffnn.zero_grad() # clear gradient variables

ei*: one-hot vector  
of the label  
(e.g., [0, 1, 0])

Computa?on Graphs in Pytorch

P (y|x) = softmax(Wg(V f(x)))

ffnn = FFNN()

loss.backward()

probs = ffnn.forward(input)
loss = torch.neg(torch.log(probs)).dot(gold_label)

def make_update(input, gold_label):

ffnn.zero_grad() # clear gradient variables

ei*: one-hot vector  
of the label  
(e.g., [0, 1, 0])

Computa?on Graphs in Pytorch

P (y|x) = softmax(Wg(V f(x)))

ffnn = FFNN()

loss.backward()

probs = ffnn.forward(input)
loss = torch.neg(torch.log(probs)).dot(gold_label)

optimizer.step()

def make_update(input, gold_label):

ffnn.zero_grad() # clear gradient variables

ei*: one-hot vector  
of the label  
(e.g., [0, 1, 0])

Training a Model

Training a Model
Define a computa?on graph

Training a Model
Define a computa?on graph

For each epoch:

Training a Model
Define a computa?on graph

For each epoch:

For each batch of data:

Training a Model
Define a computa?on graph

For each epoch:

Compute loss on batch

For each batch of data:

Training a Model
Define a computa?on graph

For each epoch:

Compute loss on batch

For each batch of data:

Autograd to compute gradients and take step

Training a Model
Define a computa?on graph

For each epoch:

Compute loss on batch

For each batch of data:

Decode test set

Autograd to compute gradients and take step

Batching

‣ Batching data gives speedups due to more efficient matrix opera?ons

Batching

‣ Batching data gives speedups due to more efficient matrix opera?ons

‣ Need to make the computa?on graph process a batch at the same ?me

Batching

‣ Batching data gives speedups due to more efficient matrix opera?ons

‣ Need to make the computa?on graph process a batch at the same ?me

def make_update(input, gold_label)

input is [batch_size, num_feats]  
gold_label is [batch_size, num_classes]

Batching

‣ Batching data gives speedups due to more efficient matrix opera?ons

‣ Need to make the computa?on graph process a batch at the same ?me

probs = ffnn.forward(input) # [batch_size, num_classes]

def make_update(input, gold_label)

input is [batch_size, num_feats]  
gold_label is [batch_size, num_classes]

...

Batching

‣ Batching data gives speedups due to more efficient matrix opera?ons

‣ Need to make the computa?on graph process a batch at the same ?me

probs = ffnn.forward(input) # [batch_size, num_classes]
loss = torch.sum(torch.neg(torch.log(probs)).dot(gold_label))

...

def make_update(input, gold_label)

input is [batch_size, num_feats]  
gold_label is [batch_size, num_classes]

...

Batching

‣ Batching data gives speedups due to more efficient matrix opera?ons

‣ Need to make the computa?on graph process a batch at the same ?me

probs = ffnn.forward(input) # [batch_size, num_classes]
loss = torch.sum(torch.neg(torch.log(probs)).dot(gold_label))

...

‣ Batch sizes from 1-100 oSen work well

def make_update(input, gold_label)

input is [batch_size, num_feats]  
gold_label is [batch_size, num_classes]

...

