Lecture 6: Neural Networks

Alan Ritter

This Lecture

- Neural network history
- Neural network basics
- Feedforward neural networks + backpropagation
- Applications
- Implementing neural networks (if time)

History: NN "dark ages"

History: NN "dark ages"

- Convnets: applied to MNIST by LeCun in 1998

History: NN "dark ages"

- Convnets: applied to MNIST by LeCun in 1998

- LSTMs: Hochreiter and Schmidhuber (1997)

History: NN "dark ages"

- Convnets: applied to MNIST by LeCun in 1998

- LSTMs: Hochreiter and Schmidhuber (1997)

- Henderson (2003): neural shift-reduce parser, not SOTA

2008-2013: A glimmer of light...

2008-2013: A glimmer of light...

- Collobert and Weston 2011: "NLP (almost) from scratch"
- Feedforward neural nets induce features for sequential CRFs ("neural CRF")
- 2008 version was marred by bad experiments, claimed SOTA but wasn't, 2011 version tied SOTA

2008-2013: A glimmer of light...

- Collobert and Weston 2011: "NLP (almost) from scratch"
- Feedforward neural nets induce features for sequential CRFs ("neural CRF")
- 2008 version was marred by bad experiments, claimed SOTA but wasn't, 2011 version tied SOTA
- Krizhevskey et al. (2012): AlexNet for vision

2008-2013: A glimmer of light...

- Collobert and Weston 2011: "NLP (almost) from scratch"
- Feedforward neural nets induce features for sequential CRFs ("neural CRF")
- 2008 version was marred by bad experiments, claimed SOTA but wasn't, 2011 version tied SOTA
- Krizhevskey et al. (2012): AlexNet for vision
- Socher 2011-2014: tree-structured RNNs working okay

2014: Stuff starts working

2014: Stuff starts working

- Kim (2014) + Kalchbrenner et al. (2014): sentence classification / sentiment (convnets work for NLP?)

2014: Stuff starts working

- Kim (2014) + Kalchbrenner et al. (2014): sentence classification / sentiment (convnets work for NLP?)
- Sutskever et al. + Bahdanau et al.: seq2seq for neural MT (LSTMs work for NLP?)

2014: Stuff starts working

- Kim (2014) + Kalchbrenner et al. (2014): sentence classification / sentiment (convnets work for NLP?)
- Sutskever et al. + Bahdanau et al.: seq2seq for neural MT (LSTMs work for NLP?)
- Chen and Manning transition-based dependency parser (even feedforward networks work well for NLP?)

2014: Stuff starts working

- Kim (2014) + Kalchbrenner et al. (2014): sentence classification / sentiment (convnets work for NLP?)
- Sutskever et al. + Bahdanau et al.: seq2seq for neural MT (LSTMs work for NLP?)
- Chen and Manning transition-based dependency parser (even feedforward networks work well for NLP?)
- 2015: explosion of neural nets for everything under the sun

Why didn't they work before?

Why didn't they work before?

- Datasets too small: for MT, not really better until you have 1M+ parallel sentences (and really need a lot more)

Why didn't they work before?

- Datasets too small: for MT, not really better until you have 1M+ parallel sentences (and really need a lot more)
- Optimization not well understood: good initialization, per-feature scaling + momentum (Adagrad / Adadelta / Adam) work best out-of-the-box

Why didn't they work before?

- Datasets too small: for MT, not really better until you have 1M+ parallel sentences (and really need a lot more)
- Optimization not well understood: good initialization, per-feature scaling + momentum (Adagrad / Adadelta / Adam) work best out-of-the-box
- Regularization: dropout is pretty helpful

Why didn't they work before?

- Datasets too small: for MT, not really better until you have 1M+ parallel sentences (and really need a lot more)
- Optimization not well understood: good initialization, per-feature scaling + momentum (Adagrad / Adadelta / Adam) work best out-of-the-box
- Regularization: dropout is pretty helpful
- Computers not big enough: can't run for enough iterations

Why didn't they work before?

- Datasets too small: for MT, not really better until you have 1M+ parallel sentences (and really need a lot more)
- Optimization not well understood: good initialization, per-feature scaling
+ momentum (Adagrad / Adadelta / Adam) work best out-of-the-box
- Regularization: dropout is pretty helpful
- Computers not big enough: can't run for enough iterations
- Inputs: need word representations to have the right continuous semantics

Neural Net Basics

Neural Networks

- Linear classification: $\operatorname{argmax}_{y} w^{\top} f(x, y)$

Neural Networks

- Linear classification: $\operatorname{argmax}_{y} w^{\top} f(x, y)$
- How can we do nonlinear classification? Kernels are too slow...

Neural Networks

- Linear classification: $\operatorname{argmax}_{y} w^{\top} f(x, y)$
- How can we do nonlinear classification? Kernels are too slow...
- Want to learn intermediate conjunctive features of the input

Neural Networks

- Linear classification: $\operatorname{argmax}_{y} w^{\top} f(x, y)$
- How can we do nonlinear classification? Kernels are too slow...
- Want to learn intermediate conjunctive features of the input
the movie was not all that good

Neural Networks

- Linear classification: $\operatorname{argmax}_{y} w^{\top} f(x, y)$
- How can we do nonlinear classification? Kernels are too slow...
- Want to learn intermediate conjunctive features of the input
the movie was not all that good
I[contains not \& contains good]

Neural Networks: XOR

- Let's see how we can use neural nets to learn a simple nonlinear function
- Inputs
- Output

Neural Networks: XOR

- Let's see how we can use neural nets to learn a simple nonlinear function
- Inputs x_{1}, x_{2}

$$
\text { (generally } \left.\mathbf{x}=\left(x_{1}, \ldots, x_{m}\right)\right)
$$

- Output y
$\left(\right.$ generally $\left.\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)\right)$

Neural Networks: XOR

- Let's see how we can use neural nets to learn a simple nonlinear function
- Inputs x_{1}, x_{2}

$$
\text { (generally } \left.\mathbf{x}=\left(x_{1}, \ldots, x_{m}\right)\right)
$$

- Output y
$\left(\right.$ generally $\left.\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)\right)$

x_{1}	x_{2}	$y=x_{1}$ XOR x_{2}
0	0	
0	1	
1	0	
1	1	

Neural Networks: XOR

- Let's see how we can use neural nets to learn a simple nonlinear function
- Inputs x_{1}, x_{2}

$$
\text { (generally } \left.\mathbf{x}=\left(x_{1}, \ldots, x_{m}\right)\right)
$$

- Output y
$\left(\right.$ generally $\left.\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)\right)$

x_{1}	x_{2}	$y=x_{1}$ XOR x_{2}
0	0	0
0	1	1
1	0	1
1	1	0

Neural Networks: XOR

- Let's see how we can use neural nets to learn a simple nonlinear function
- Inputs x_{1}, x_{2}

$$
\text { (generally } \left.\mathbf{x}=\left(x_{1}, \ldots, x_{m}\right)\right)
$$

- Output y

$\left(\right.$ generally $\left.\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)\right)$

x_{1}	x_{2}	$y=x_{1}$ XOR x_{2}
0	0	0
0	1	1
1	0	1
1	1	0

Neural Networks: XOR

Neural Networks: XOR

x_{1}	x_{2}	$x_{1} \mathrm{XOR} x_{2}$
0	0	0
0	1	1
1	0	1
1	1	0

Neural Networks: XOR

x_{1}	x_{2}	$x_{1} \mathrm{XOR} x_{2}$
0	0	0
0	1	1
1	0	1
1	1	0

Neural Networks: XOR

x_{1}	x_{2}	$x_{1} \mathrm{XOR} x_{2}$
0	0	0
0	1	1
1	0	1
1	1	0

Neural Networks: XOR

$$
y=a_{1} x_{1}+a_{2} x_{2}
$$

x_{1}	x_{2}	$x_{1} \mathrm{XOR} x_{2}$
0	0	0
0	1	1
1	0	1
1	1	0

Neural Networks: XOR

x_{1}	x_{2}	$x_{1} \mathrm{XOR} x_{2}$
0	0	0
0	1	1
1	0	1
1	1	0

Neural Networks: XOR

x_{1}	x_{2}	$x_{1} \mathrm{XOR} x_{2}$
0	0	0
0	1	1
1	0	1
1	1	0

Neural Networks: XOR

x_{1}	x_{2}	x_{1} XOR x_{2}
0	0	0
0	1	1
1	0	1
1	1	0

Neural Networks: XOR

x_{1}	x_{2}	$x_{1} \mathrm{XOR} x_{2}$
0	0	0
0	1	1
1	0	1
1	1	0

Neural Networks: XOR

$$
\begin{aligned}
& y=a_{1} x_{1}+a_{2} x_{2} \\
& y=a_{1} x_{1}+a_{2} x_{2}+a_{3} \tanh \left(x_{1}+x_{2}\right)
\end{aligned}
$$

(looks like action potential in neuron)

Neural Networks: XOR

x_{1}	x_{2}	x_{1} XOR x_{2}
0	0	0
0	1	1
1	0	1
1	1	0

Neural Networks: XOR

$$
y=a_{1} x_{1}+a_{2} x_{2}
$$

$$
y=a_{1} x_{1}+a_{2} x_{2}+a_{3} \tanh \left(x_{1}+x_{2}\right)
$$

$$
y=-x_{1}-x_{2}+2 \tanh \left(x_{1}+x_{2}\right)
$$

"or"

x_{1}	x_{2}	$x_{1} \mathrm{XOR} x_{2}$
0	0	0
0	1	1
1	0	1
1	1	0

Neural Networks: XOR

Neural Networks: XOR

Neural Networks: XOR

the movie was not all that good

Neural Networks: XOR

Neural Networks

Neural Networks

Linear model: $y=\mathbf{w} \cdot \mathbf{x}+b$

Neural Networks

Linear model: $y=\mathbf{w} \cdot \mathbf{x}+b$

$$
\begin{aligned}
& y=g(\mathbf{w} \cdot \mathbf{x}+b) \\
& \mathbf{y}=g(\mathbf{W} \mathbf{x}+\mathbf{b}) \\
&
\end{aligned}
$$

Nonlinear transformation

Neural Networks

Linear model: $y=\mathbf{w} \cdot \mathbf{x}+b$

$$
\begin{aligned}
& y=g(\mathbf{w} \cdot \mathbf{x}+b) \\
& \mathbf{y}=g(\mathbf{W} \mathbf{x}+\mathbf{b})
\end{aligned}
$$

1
Nonlinear transformation space

Neural Networks

Linear model: $y=\mathbf{w} \cdot \mathbf{x}+b$

$$
\begin{aligned}
& y=g(\mathbf{w} \cdot \mathbf{x}+b) \\
& \mathbf{y}=g(\mathbf{W} \mathbf{x}+\mathbf{b})
\end{aligned}
$$

1
Nonlinear transformation space

Neural Networks

Linear model: $y=\mathbf{w} \cdot \mathbf{x}+b$

$$
\begin{aligned}
& y=g(\mathbf{w} \cdot \mathbf{x}+b) \\
& \mathbf{y}=g(\mathbf{W} \mathbf{x}+\mathbf{b})
\end{aligned}
$$

Nonlinear transformation space

Neural Networks

Neural Networks

Neural Networks

Linear classifier

Neural Networks

Linear classifier

Neural network

Neural Networks

Linear classifier

Neural network

...possible because we transformed the space!

Deep Neural Networks

$$
\boldsymbol{y}=g(\mathbf{W} \boldsymbol{x}+\boldsymbol{b})
$$

Deep Neural Networks

$$
\begin{aligned}
& \boldsymbol{y}=g(\mathbf{W} \boldsymbol{x}+\boldsymbol{b}) \\
& \mathbf{z}=g(\mathbf{V} \mathbf{y}+\mathbf{c}) \\
& \mathbf{z}=g(\underbrace{(\mathbf{V} \mathbf{W}+\mathbf{b}}_{\text {output of first layer }})+\mathbf{c})
\end{aligned}
$$

"Feedforward" computation (not recurrent)

Check: what happens if no nonlinearity? More powerful than basic linear models?

$$
\mathbf{z}=\mathbf{V}(\mathbf{W} \mathbf{x}+\mathbf{b})+\mathbf{c}
$$

Deep Neural Networks

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Deep Neural Networks

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Feedforward Networks, Backpropagation

Logistic Regression with NNs

$$
P(y \mid \mathbf{x})=\frac{\exp \left(w^{\top} f(\mathbf{x}, y)\right)}{\sum_{y^{\prime}} \exp \left(w^{\top} f\left(\mathbf{x}, y^{\prime}\right)\right)}
$$

- Single scalar probability

Logistic Regression with NNs

$$
P(y \mid \mathbf{x})=\frac{\exp \left(w^{\top} f(\mathbf{x}, y)\right)}{\sum_{y^{\prime}} \exp \left(w^{\top} f\left(\mathbf{x}, y^{\prime}\right)\right)}
$$

- Single scalar probability

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}\left(\left[w^{\top} f(\mathbf{x}, y)\right]_{y \in \mathcal{Y}}\right)
$$

Logistic Regression with NNs

$$
P(y \mid \mathbf{x})=\frac{\exp \left(w^{\top} f(\mathbf{x}, y)\right)}{\sum_{y^{\prime}} \exp \left(w^{\top} f\left(\mathbf{x}, y^{\prime}\right)\right)} \quad \text {. Single scalar probability }
$$

$$
\begin{aligned}
P(\mathbf{y} \mid \mathbf{x})= & \operatorname{softmax}\left(\left[w^{\top} f(\mathbf{x}, y)\right]_{y \in \mathcal{Y}}\right) \\
& \operatorname{softmax}(p)_{i}=\frac{\exp \left(p_{i}\right)}{\sum_{i^{\prime}} \exp \left(p_{i^{\prime}}\right)}
\end{aligned}
$$

Logistic Regression with NNs

$$
P(y \mid \mathbf{x})=\frac{\exp \left(w^{\top} f(\mathbf{x}, y)\right)}{\sum_{y^{\prime}} \exp \left(w^{\top} f\left(\mathbf{x}, y^{\prime}\right)\right)}
$$

- Single scalar probability
$P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}\left(\left[w^{\top} f(\mathbf{x}, y)\right] \stackrel{\text { Compute scores for all possible }}{ } \quad \begin{array}{l}\text { Comels at once (returns vector) }\end{array}\right.$
$\operatorname{softmax}(p)_{i}=\frac{\exp \left(p_{i}\right)}{\sum_{i^{\prime}} \exp \left(p_{i^{\prime}}\right)}$

Logistic Regression with NNs

$$
P(y \mid \mathbf{x})=\frac{\exp \left(w^{\top} f(\mathbf{x}, y)\right)}{\sum_{y^{\prime}} \exp \left(w^{\top} f\left(\mathbf{x}, y^{\prime}\right)\right)}
$$

- Single scalar probability

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}\left(\left[w^{\top} f(\mathbf{x}, y)\right]_{y \in \mathcal{Y}}\right)
$$

- Compute scores for all possible labels at once (returns vector)

$$
\operatorname{softmax}(p)_{i}=\frac{\exp \left(p_{i}\right)}{\sum_{i^{\prime}} \exp \left(p_{i^{\prime}}\right)}
$$

- softmax: exps and normalizes a given vector

Logistic Regression with NNs

$$
P(y \mid \mathbf{x})=\frac{\exp \left(w^{\top} f(\mathbf{x}, y)\right)}{\sum_{y^{\prime}} \exp \left(w^{\top} f\left(\mathbf{x}, y^{\prime}\right)\right)}
$$

- Single scalar probability
- Compute scores for all possible $P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}\left(\left[w^{\top} f(\mathbf{x}, y)\right]{ }_{y \in \mathcal{Y})} \quad \begin{array}{l}\text { Compute scores for all possible } \\ \text { labels at once (returns vector) }\end{array}\right.$

$$
\operatorname{softmax}(p)_{i}=\frac{\exp \left(p_{i}\right)}{\sum_{i^{\prime}} \exp \left(p_{i^{\prime}}\right)}
$$

$P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W f(\mathbf{x}))$

- Weight vector per class; W is [num classes x num feats]

Logistic Regression with NNs

$$
\begin{array}{ll}
P(y \mid \mathbf{x})=\frac{\exp \left(w^{\top} f(\mathbf{x}, y)\right)}{\sum_{y^{\prime}} \exp \left(w^{\top} f\left(\mathbf{x}, y^{\prime}\right)\right)} & , \text { Single scalar probability } \\
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}\left(\left[w^{\top} f(\mathbf{x}, y)\right]_{y \in \mathcal{Y})}\right. & \begin{array}{l}
\text { Compute scores for all possible } \\
\text { labels at once (returns vector) }
\end{array}
\end{array}
$$

$$
\operatorname{softmax}(p)_{i}=\frac{\exp \left(p_{i}\right)}{\sum_{i^{\prime}} \exp \left(p_{i^{\prime}}\right)}
$$

- softmax: exps and normalizes a given vector

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W f(\mathbf{x}))
$$

- Weight vector per class; W is [num classes x num feats]
$P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x}))) \quad$. Now one hidden layer

Neural Networks for Classification

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x})))
$$

Neural Networks for Classification

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x})))
$$

n features

Neural Networks for Classification

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x})))
$$

n features

Neural Networks for Classification

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x})))
$$

n features

Neural Networks for Classification

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x})))
$$

Neural Networks for Classification

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x})))
$$

Neural Networks for Classification

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x})))
$$

(tanh, relu, ...) matrix

Neural Networks for Classification

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x})))
$$

n features

Neural Networks for Classification

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x})))
$$

$$
\begin{gathered}
\text { num_classes } \\
\text { probs }
\end{gathered}
$$

$d \times n$ matrix nonlinearity
(tanh, relu, ...)

Training Neural Networks

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W \mathbf{z}) \quad \mathbf{z}=g(V f(\mathbf{x}))
$$

Training Neural Networks

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W \mathbf{z}) \quad \mathbf{z}=g(V f(\mathbf{x}))
$$

- Maximize log likelihood of training data

$$
\mathcal{L}\left(\mathbf{x}, i^{*}\right)=\log P\left(y=i^{*} \mid \mathbf{x}\right)=\log \left(\operatorname{softmax}(W \mathbf{z}) \cdot e_{i^{*}}\right)
$$

Training Neural Networks

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W \mathbf{z}) \quad \mathbf{z}=g(V f(\mathbf{x}))
$$

- Maximize log likelihood of training data

$$
\mathcal{L}\left(\mathbf{x}, i^{*}\right)=\log P\left(y=i^{*} \mid \mathbf{x}\right)=\log \left(\operatorname{softmax}(W \mathbf{z}) \cdot e_{i^{*}}\right)
$$

- i*: index of the gold label
- $e_{i}: 1$ in the ith row, zero elsewhere. Dot by this $=$ select i ith index

Training Neural Networks

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W \mathbf{z}) \quad \mathbf{z}=g(V f(\mathbf{x}))
$$

- Maximize log likelihood of training data

$$
\mathcal{L}\left(\mathbf{x}, i^{*}\right)=\log P\left(y=i^{*} \mid \mathbf{x}\right)=\log \left(\operatorname{softmax}(W \mathbf{z}) \cdot e_{i^{*}}\right)
$$

- i*: index of the gold label
- e_{i} : 1 in the ith row, zero elsewhere. Dot by this $=$ select ith index

$$
\mathcal{L}\left(\mathbf{x}, i^{*}\right)=W \mathbf{z} \cdot e_{i^{*}}-\log \sum_{j} \exp (W \mathbf{z}) \cdot e_{j}
$$

Computing Gradients

$$
\mathcal{L}\left(\mathbf{x}, i^{*}\right)=W \mathbf{z} \cdot e_{i^{*}}-\log \sum_{j} \exp (W \mathbf{z}) \cdot e_{j}
$$

Computing Gradients

$$
\mathcal{L}\left(\mathbf{x}, i^{*}\right)=W \mathbf{z} \cdot e_{i^{*}}-\log \sum_{j} \exp (W \mathbf{z}) \cdot e_{j}
$$

- Gradient with respect to W

Computing Gradients

$$
\mathcal{L}\left(\mathbf{x}, i^{*}\right)=W \mathbf{z} \cdot e_{i^{*}}-\log \sum_{j} \exp (W \mathbf{z}) \cdot e_{j}
$$

- Gradient with respect to W

$$
\frac{\partial}{\partial W_{i j}} \mathcal{L}\left(\mathbf{x}, i^{*}\right)=\left\{\begin{array}{cl}
\mathbf{z}_{j}-P(y=i \mid \mathbf{x}) \mathbf{z}_{j} & \text { if } i=i^{*} \\
-P(y=i \mid \mathbf{x}) \mathbf{z}_{j} & \text { otherwise }
\end{array}\right.
$$

Computing Gradients

$$
\mathcal{L}\left(\mathbf{x}, i^{*}\right)=W \mathbf{z} \cdot e_{i^{*}}-\log \sum_{j} \exp (W \mathbf{z}) \cdot e_{j}
$$

- Gradient with respect to W

W j

$$
\frac{\partial}{\partial W_{i j}} \mathcal{L}\left(\mathbf{x}, i^{*}\right)= \begin{cases}\mathbf{z}_{j}-P(y=i \mid \mathbf{x}) \mathbf{z}_{j} & \text { if } i=i^{*} \\ -P(y=i \mid \mathbf{x}) \mathbf{z}_{j} & \text { otherwise }\end{cases}
$$

\boldsymbol{i}| |
| ---: |
| |
| $\mathbf{z}_{j}-P(y=i \mid \mathbf{x}) \mathbf{z}_{j}$ |
| |

Computing Gradients

$$
\mathcal{L}\left(\mathbf{x}, i^{*}\right)=W \mathbf{z} \cdot e_{i^{*}}-\log \sum_{j} \exp (W \mathbf{z}) \cdot e_{j}
$$

- Gradient with respect to W

$$
W_{j}
$$

$$
\frac{\partial}{\partial W_{i j}} \mathcal{L}\left(\mathbf{x}, i^{*}\right)= \begin{cases}\mathbf{z}_{j}-P(y=i \mid \mathbf{x}) \mathbf{z}_{j} & \text { if } i=i^{*} \\ -P(y=i \mid \mathbf{x}) \mathbf{z}_{j} & \text { otherwise }\end{cases}
$$

$\mathbf{z}_{j}-P(y=i \mid \mathbf{x}) \mathbf{z}_{j}$

- Looks like logistic regression with \boldsymbol{z} as the features!

Neural Networks for Classification

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x})))
$$

Neural Networks for Classification

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x})))
$$

Computing Gradients: Backpropagation

$$
\mathcal{L}\left(\mathbf{x}, i^{*}\right)=W \mathbf{z} \cdot e_{i^{*}}-\log \sum_{j} \exp (W \mathbf{z}) \cdot e_{j}
$$

$\mathbf{z}=g(V f(\mathbf{x}))$
Activations at hidden layer

Computing Gradients: Backpropagation

$$
\mathcal{L}\left(\mathbf{x}, i^{*}\right)=W \mathbf{z} \cdot e_{i^{*}}-\log \sum_{j} \exp (W \mathbf{z}) \cdot e_{j}
$$

- Gradient with respect to V : apply the chain rule

$$
\frac{\partial \mathcal{L}\left(\mathbf{x}, i^{*}\right)}{\partial V_{i j}}=\frac{\partial \mathcal{L}\left(\mathbf{x}, i^{*}\right)}{\partial \mathbf{z}} \frac{\partial \mathbf{z}}{\partial V_{i j}}
$$

Computing Gradients: Backpropagation

$$
\mathcal{L}\left(\mathbf{x}, i^{*}\right)=W \mathbf{z} \cdot e_{i^{*}}-\log \sum_{j} \exp (W \mathbf{z}) \cdot e_{j}
$$

- Gradient with respect to V : apply the chain rule
$\mathbf{z}=g(V f(\mathbf{x}))$
Activations at hidden layer

$$
\frac{\partial \mathcal{L}\left(\mathbf{x}, i^{*}\right)}{\partial V_{i j}}=\frac{\partial \mathcal{L}\left(\mathbf{x}, i^{*}\right)}{\partial \mathbf{z}} \frac{\partial \mathbf{z}}{\partial V_{i j}}
$$

Computing Gradients: Backpropagation

$$
\mathcal{L}\left(\mathbf{x}, i^{*}\right)=W \mathbf{z} \cdot e_{i^{*}}-\log \sum_{j} \exp (W \mathbf{z}) \cdot e_{j}
$$

- Gradient with respect to V : apply the chain rule

$$
\mathbf{z}=g(V f(\mathbf{x}))
$$

Activations at hidden layer

Computing Gradients: Backpropagation

$$
\mathcal{L}\left(\mathbf{x}, i^{*}\right)=W \mathbf{z} \cdot e_{i^{*}}-\log \sum_{j} \exp (W \mathbf{z}) \cdot e_{j}
$$

- Gradient with respect to V : apply the chain rule

$$
\mathbf{z}=g(V f(\mathbf{x}))
$$

Activations at hidden layer

$$
\begin{aligned}
& \frac{\partial \mathcal{L}\left(\mathbf{x}, i^{*}\right)}{\partial V_{i j}}=\frac{\partial \mathcal{L}\left(\mathbf{x}, i^{*}\right)}{\partial \mathbf{z}} \frac{\partial \mathbf{z}}{\partial V_{i j}} \\
& \begin{array}{l}
\operatorname{err}(\text { root })=e_{i^{*}}-P(\mathbf{y} \mid \mathbf{x}) \\
\operatorname{dim}=\text { num_classes }
\end{array} \quad \begin{array}{l}
\frac{\partial \mathcal{L}\left(\mathbf{x}, i^{*}\right)}{\partial \mathbf{z}}=\operatorname{err}(\mathbf{z})=W^{\top} \operatorname{err}(\text { root })
\end{array}
\end{aligned}
$$

Backpropagation: Picture

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x})))
$$

Backpropagation: Picture

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x})))
$$

Backpropagation: Picture

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x})))
$$

Backpropagation: Picture

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x})))
$$

Computing Gradients: Backpropagation

$$
\mathcal{L}\left(\mathbf{x}, i^{*}\right)=W \mathbf{z} \cdot e_{i^{*}}-\log \sum_{j=1}^{m} \exp \left(W \mathbf{z} \cdot e_{j}\right)
$$

- Gradient with respect to V : apply the chain rule

$$
\frac{\partial \mathcal{L}\left(\mathbf{x}, i^{*}\right)}{\partial V_{i j}}=\frac{\partial \mathcal{L}\left(\mathbf{x}, i^{*}\right)}{\partial \mathbf{z}} \frac{\partial \mathbf{z}}{V_{i j}}
$$

Computing Gradients: Backpropagation

$$
\mathcal{L}\left(\mathbf{x}, i^{*}\right)=W \mathbf{z} \cdot e_{i^{*}}-\log \sum_{j=1}^{m} \exp \left(W \mathbf{z} \cdot e_{j}\right)
$$

- Gradient with respect to V : apply the chain rule

$$
\mathbf{z}=g(V f(\mathbf{x}))
$$

Activations at hidden layer

$$
\frac{\partial \mathcal{L}\left(\mathbf{x}, i^{*}\right)}{\partial V_{i j}}=\frac{\partial \mathcal{L}\left(\mathbf{x}, i^{*}\right)}{\partial \mathbf{z}} \frac{\partial \mathbf{z}}{V_{i j}}
$$

Computing Gradients: Backpropagation

$$
\begin{array}{ll}
\mathcal{L}\left(\mathbf{x}, i^{*}\right)=W \mathbf{z} \cdot e_{i^{*}}-\log \sum_{j=1}^{m} \exp \left(W \mathbf{z} \cdot e_{j}\right) & \begin{array}{l}
\mathbf{z}=g(V f(\mathbf{x})) \\
\text { Activations at }
\end{array} \\
\text { Gradient with respect to } V \text { : apply the chain rule } & \text { hidden layer }
\end{array}
$$

$$
\frac{\partial \mathcal{L}\left(\mathbf{x}, i^{*}\right)}{\partial V_{i j}}=\frac{\partial \mathcal{L}\left(\mathbf{x}, i^{*}\right)}{\partial \mathbf{z}} \frac{\partial \mathbf{z}}{V_{i j}} \quad \frac{\partial \mathbf{z}}{V_{i j}}=\frac{\partial g(\mathbf{a})}{\partial \mathbf{a}} \frac{\partial \mathbf{a}}{\partial V_{i j}} \quad \mathbf{a}=V f(\mathbf{x})
$$

Computing Gradients: Backpropagation

$$
\begin{array}{ll}
\mathcal{L}\left(\mathbf{x}, i^{*}\right)=W \mathbf{z} \cdot e_{i^{*}}-\log \sum_{j=1}^{m} \exp \left(W \mathbf{z} \cdot e_{j}\right) & \begin{array}{l}
\mathbf{z}=g(V f(\mathbf{x})) \\
\text { Activations at }
\end{array} \\
\text { Gradient with respect to } V \text { : apply the chain rule } &
\end{array}
$$

$$
\frac{\partial \mathcal{L}\left(\mathbf{x}, i^{*}\right)}{\partial V_{i j}}=\frac{\partial \mathcal{L}\left(\mathbf{x}, i^{*}\right)}{\partial \mathbf{z}} \frac{\frac{\partial \mathbf{z}}{V_{i j}}}{} \frac{\partial \mathbf{z}}{V_{i j}}=\frac{\partial g(\mathbf{a})}{\partial \mathbf{a}} \frac{\partial \mathbf{a}}{\partial V_{i j}} \quad \mathbf{a}=V f(\mathbf{x})
$$

Computing Gradients: Backpropagation

$$
\begin{array}{ll}
\mathcal{L}\left(\mathbf{x}, i^{*}\right)=W \mathbf{z} \cdot e_{i^{*}}-\log \sum_{j=1}^{m} \exp \left(W \mathbf{z} \cdot e_{j}\right) & \begin{array}{l}
\mathbf{z}=g(V f(\mathbf{x})) \\
\text { Activations at } \\
\text { hidden layer }
\end{array}
\end{array}
$$

$$
\frac{\partial \mathcal{L}\left(\mathbf{x}, i^{*}\right)}{\partial V_{i j}}=\frac{\partial \mathcal{L}\left(\mathbf{x}, i^{*}\right)}{\partial \mathbf{z}} \frac{\partial \mathbf{z}}{V_{i j}} \quad \frac{\partial \mathbf{z}}{V_{i j}}=\frac{\partial g(\mathbf{a})}{\partial \mathbf{a}} \frac{\partial \mathbf{a}}{\partial V_{i j}} \quad \mathbf{a}=V f(\mathbf{x})
$$

- First term: gradient of nonlinear activation function at \boldsymbol{a} (depends on current value)

Computing Gradients: Backpropagation

$$
\begin{array}{ll}
\mathcal{L}\left(\mathbf{x}, i^{*}\right)=W \mathbf{z} \cdot e_{i^{*}}-\log \sum_{j=1}^{m} \exp \left(W \mathbf{z} \cdot e_{j}\right) & \begin{array}{l}
\mathbf{z}=g(V f(\mathbf{x})) \\
\text { Activations at }
\end{array} \\
\text { Gradient with respect to } V \text { : apply the chain rule } & \text { hidden layer }
\end{array}
$$

$$
\frac{\partial \mathcal{L}\left(\mathbf{x}, i^{*}\right)}{\partial V_{i j}}=\frac{\partial \mathcal{L}\left(\mathbf{x}, i^{*}\right)}{\partial \mathbf{z}} \frac{\partial \mathbf{z}}{V_{i j}} \quad \frac{\partial \mathbf{z}}{V_{i j}}=\begin{array}{|c|c|}
\hline \frac{\partial g(\mathbf{a})}{\partial \mathbf{a}} \frac{\partial \mathbf{a}}{\partial V_{i j}} & \mathbf{a}=V f(\mathbf{x}) \\
\hline
\end{array}
$$

- First term: gradient of nonlinear activation function at \boldsymbol{a} (depends on current value)
- Second term: gradient of linear function

Computing Gradients: Backpropagation

$$
\begin{array}{ll}
\mathcal{L}\left(\mathbf{x}, i^{*}\right)=W \mathbf{z} \cdot e_{i^{*}}-\log \sum_{j=1}^{m} \exp \left(W \mathbf{z} \cdot e_{j}\right) & \begin{array}{l}
\mathbf{z}=g(V f(\mathbf{x})) \\
\text { Activations at }
\end{array} \\
\text { Gradient with respect to } V \text { : apply the chain rule } &
\end{array}
$$

$$
\frac{\partial \mathcal{L}\left(\mathbf{x}, i^{*}\right)}{\partial V_{i j}}=\frac{\partial \mathcal{L}\left(\mathbf{x}, i^{*}\right)}{\partial \mathbf{z}} \frac{\partial \mathbf{z}}{V_{i j}} \quad \frac{\partial \mathbf{z}}{V_{i j}}=\begin{array}{|c|c|}
\hline \frac{\partial g(\mathbf{a})}{\partial \mathbf{a}} \frac{\partial \mathbf{a}}{\partial V_{i j}} \quad \mathbf{a}=V f(\mathbf{x}),
\end{array}
$$

- First term: gradient of nonlinear activation function at a (depends on current value)
- Second term: gradient of linear function
- Straightforward computation once we have err(z)

Backpropagation: Picture

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x})))
$$

Backpropagation: Picture

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x})))
$$

Backpropagation

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x})))
$$

Backpropagation

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x})))
$$

- Step 1: compute $\operatorname{err}($ root $)=e_{i^{*}}-P(\mathbf{y} \mid \mathbf{x}) \quad$ (vector)

Backpropagation

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x})))
$$

- Step 1: compute $\operatorname{err}($ root $)=e_{i^{*}}-P(\mathbf{y} \mid \mathbf{x}) \quad$ (vector)
- Step 2: compute derivatives of W using err(root) (matrix)

Backpropagation

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x})))
$$

- Step 1: compute $\operatorname{err}($ root $)=e_{i^{*}}-P(\mathbf{y} \mid \mathbf{x}) \quad$ (vector)
- Step 2: compute derivatives of W using err(root) (matrix)
- Step 3: compute $\frac{\partial \mathcal{L}\left(\mathbf{x}, i^{*}\right)}{\partial \mathbf{z}}=\operatorname{err}(\mathbf{z})=W^{\top} \operatorname{err}$ (root) (vector)

Backpropagation

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x})))
$$

- Step 1: compute $\operatorname{err}($ root $)=e_{i^{*}}-P(\mathbf{y} \mid \mathbf{x}) \quad$ (vector)
- Step 2: compute derivatives of W using err(root) (matrix)
- Step 3: compute $\frac{\partial \mathcal{L}\left(\mathbf{x}, i^{*}\right)}{\partial \mathbf{z}}=\operatorname{err}(\mathbf{z})=W^{\top} \operatorname{err}$ (root) (vector)
- Step 4: compute derivatives of V using $\operatorname{err}(\mathbf{z}) \quad$ (matrix)

Backpropagation

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x})))
$$

- Step 1: compute $\operatorname{err}($ root $)=e_{i^{*}}-P(\mathbf{y} \mid \mathbf{x}) \quad$ (vector)
- Step 2: compute derivatives of W using err(root) (matrix)
- Step 3: compute $\frac{\partial \mathcal{L}\left(\mathbf{x}, i^{*}\right)}{\partial \mathbf{z}}=\operatorname{err}(\mathbf{z})=W^{\top} \operatorname{err}$ (root) (vector)
- Step 4: compute derivatives of V using $\operatorname{err}(\mathbf{z}) \quad$ (matrix)
- Step 5+: continue backpropagation (compute err(f(x)) if necessary...)

Backpropagation: Takeaways

Backpropagation: Takeaways

- Gradients of output weights W are easy to compute - looks like logistic regression with hidden layer \boldsymbol{z} as feature vector

Backpropagation: Takeaways

- Gradients of output weights W are easy to compute - looks like logistic regression with hidden layer \boldsymbol{z} as feature vector
- Can compute derivative of loss with respect to \boldsymbol{z} to form an "error signal" for backpropagation

Backpropagation: Takeaways

- Gradients of output weights W are easy to compute - looks like logistic regression with hidden layer \boldsymbol{z} as feature vector
- Can compute derivative of loss with respect to \boldsymbol{z} to form an "error signal" for backpropagation
- Easy to update parameters based on "error signal" from next layer, keep pushing error signal back as backpropagation

Backpropagation: Takeaways

- Gradients of output weights W are easy to compute - looks like logistic regression with hidden layer \boldsymbol{z} as feature vector
- Can compute derivative of loss with respect to \boldsymbol{z} to form an "error signal" for backpropagation
- Easy to update parameters based on "error signal" from next layer, keep pushing error signal back as backpropagation
- Need to remember the values from the forward computation

Applications

NLP with Feedforward Networks

- Part-of-speech tagging with FFNNs

NLP with Feedforward Networks

- Part-of-speech tagging with FFNNs
??
Fed raises interest rates in order to ...

NLP with Feedforward Networks

- Part-of-speech tagging with FFNNs
??
Fed raises interest rates in order to ...

NLP with Feedforward Networks

- Part-of-speech tagging with FFNNs
??
Fed raises interest rates in order to ...
- Word embeddings for each word form input

NLP with Feedforward Networks

- Part-of-speech tagging with FFNNs
??
Fed raises interest rates in order to ...
- Word embeddings for each word form input

$$
f(x)
$$

NLP with Feedforward Networks

- Part-of-speech tagging with FFNNs
??
Fed raises interest rates in order to ...
- Word embeddings for each word form input
- ~1000 features here - smaller feature vector than in sparse models, but every feature fires on every example

$$
f(x)
$$

NLP with Feedforward Networks

- Part-of-speech tagging with FFNNs
??
Fed raises interest rates in order to ...
- Word embeddings for each word form input
- ~1000 features here - smaller feature vector than in sparse models, but every feature fires on every example
- Weight matrix learns position-dependent processing of the words

$$
f(x)
$$

NLP with Feedforward Networks

- Hidden layer mixes these different signals and learns feature conjunctions

NLP with Feedforward Networks

- Multilingual tagging results:

Model	Acc.	Wts.	MB	Ops.
Gillick et al. (2016)	95.06	900 k	-	6.63 m
Small FF	94.76	241 k	0.6	0.27 m
+Clusters	95.56	261 k	1.0	0.31 m
$\frac{1}{2}$ Dim.	95.39	143 k	0.7	0.18 m

- Gillick used LSTMs; this is smaller, faster, and better

Sentiment Analysis

- Deep Averaging Networks: feedforward neural network on average of word embeddings from input

Sentiment Analysis

Coreference Resolution

- Feedforward networks identify coreference arcs

Clark and Manning (2015), Wiseman et al. (2015)

Coreference Resolution

- Feedforward networks identify coreference arcs

President Obama signed...
?
He later gave a speech...

Clark and Manning (2015), Wiseman et al. (2015)

Coreference Resolution

- Feedforward networks identify coreference arcs

Clark and Manning (2015), Wiseman et al. (2015)

Implementation Details

Computation Graphs

- Computing gradients is hard!

Computation Graphs

- Computing gradients is hard!
- Automatic differentiation: instrument code to keep track of derivatives

Computation Graphs

- Computing gradients is hard!
- Automatic differentiation: instrument code to keep track of derivatives

$$
y=x * x \underset{\text { codegen }}{ }(y, d y)=(x * x, 2 * x * d x)
$$

Computation Graphs

- Computing gradients is hard!
- Automatic differentiation: instrument code to keep track of derivatives

$$
y=x * x \underset{\text { codegen }}{ }(y, d y)=(x * x, 2 * x * d x)
$$

- Computation is now something we need to reason about symbolically

Computation Graphs

- Computing gradients is hard!
- Automatic differentiation: instrument code to keep track of derivatives

$$
y=x * x \underset{\text { codegen }}{ }(y, d y)=(x * x, 2 * x * d x)
$$

- Computation is now something we need to reason about symbolically
- Use a library like Pytorch or Tensorflow. This class: Pytorch

Computation Graphs in Pytorch

- Define forward pass for $P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x})))$

```
class FFNN(nn.Module):
def __init__(self, inp, hid, out):
    super(FFNN, self).___init__()
    self.V = nn.Linear(inp, hid)
    self.g = nn.Tanh()
    self.W = nn.Linear(hid, out)
    self.softmax = nn.Softmax(dim=0)
def forward(self, x):
    return self.softmax(self.W(self.g(self.V(x))))
```


Computation Graphs in Pytorch

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x})))
$$

Computation Graphs in Pytorch

$$
\begin{aligned}
& P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x}))) \\
& \mathrm{ffnn}=\operatorname{FFNN}()
\end{aligned}
$$

Computation Graphs in Pytorch

$P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x})))$
ffnn $=$ FFNN()
def make_update(input, gold_label):

Computation Graphs in Pytorch

$P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x}))) \quad$ ei*: one-hot vector of the label
(e.g., [0, 1, 0])
ffnn = FFNN()
def make_update(input, gold_label):

Computation Graphs in Pytorch

$P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x}))) \quad$ ei*: one-hot vector $P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x})))$ of the label
ffnn = FFNN()

def make_update(input, gold_label):
ffnn.zero_grad() \# clear gradient variables

Computation Graphs in Pytorch

$P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x})))$ ei*: one-hot vector
$P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x}))) \quad$ of the label
ffnn = FFNN()
(e.g., [0, 1, 0])
def make_update(input, gold_label):
ffnn.zero_grad() \# clear gradient variables
probs = ffnn.forward(input)

Computation Graphs in Pytorch

```
P(\mathbf{y}|\mathbf{x})=softmax(Wg(Vf(\mathbf{x}))) ei*: one-hot vector
of the label
(e.g., [0, 1, 0])
ffnn = FFNN()
def make_update(input, gold_label):
    ffnn.zero_grad() # clear gradient variables
    probs = ffnn.forward(input)
    loss = torch.neg(torch.log(probs)).dot(gold_label)
```


Computation Graphs in Pytorch

```
P(\mathbf{y}|\mathbf{x})=\mp@code{Stmax(Wg(Vf(\mathbf{x}))) ei*: one-hot vector}
of the label
    (e.g., [0, 1, 0])
ffnn = FFNN()
```



```
def make_update(input, gold_label):
    ffnn.zero_grad() # clear gradient variables
    probs = ffnn.forward(input)
    loss = torch.neg(torch.log(probs)).dot(gold_label)
    loss.backward()
```


Computation Graphs in Pytorch

```
P(\mathbf{y}|\mathbf{x})=softmax(Wg(Vf(\mathbf{x}))) ei*: one-hot vector
of the label
    (e.g., [0, 1, 0])
ffnn = FFNN()
```



```
def make_update(input, gold_label):
    ffnn.zero_grad() # clear gradient variables
    probs = ffnn.forward(input)
    loss = torch.neg(torch.log(probs)).dot(gold_label)
    loss.backward()
    optimizer.step()
```

Training a Model

Training a Model

Define a computation graph

Training a Model

Define a computation graph

For each epoch:

Training a Model

Define a computation graph
For each epoch:
For each batch of data:

Training a Model

Define a computation graph
For each epoch:
For each batch of data:
Compute loss on batch

Training a Model

Define a computation graph
For each epoch:
For each batch of data:
Compute loss on batch
Autograd to compute gradients and take step

Training a Model

Define a computation graph
For each epoch:
For each batch of data:
Compute loss on batch
Autograd to compute gradients and take step
Decode test set

Batching

- Batching data gives speedups due to more efficient matrix operations

Batching

- Batching data gives speedups due to more efficient matrix operations
- Need to make the computation graph process a batch at the same time

Batching

- Batching data gives speedups due to more efficient matrix operations
- Need to make the computation graph process a batch at the same time

```
# input is [batch_size, num_feats]
# gold_label is [batch_size, num_classes]
def make_update(input, gold_label)
```


Batching

- Batching data gives speedups due to more efficient matrix operations
- Need to make the computation graph process a batch at the same time

```
# input is [batch_size, num_feats]
# gold_label is [batch_size, num_classes]
def make_update(input, gold_label)
```

 probs \(=\) ffnn.forward(input) \# [batch_size, num_classes]

Batching

- Batching data gives speedups due to more efficient matrix operations
- Need to make the computation graph process a batch at the same time

```
# input is [batch_size, num_feats]
# gold_label is [batch_size, num_classes]
def make_update(input, gold_label)
```

probs $=$ ffnn.forward(input) \# [batch_size, num_classes]
loss $=$ torch.sum(torch.neg(torch.log(probs)).dot(gold_label))

Batching

- Batching data gives speedups due to more efficient matrix operations
- Need to make the computation graph process a batch at the same time

```
# input is [batch_size, num_feats]
# gold_label is [batch_size, num_classes]
def make_update(input, gold_label)
```

probs $=$ ffnn.forward(input) \# [batch_size, num_classes]
loss $=$ torch.sum(torch.neg(torch.log(probs)).dot(gold_label))

- Batch sizes from 1-100 often work well

