Lecture 7: Tricks + Word Embeddings

Alan Ritter

(many slides from Greg Durrett)

Recall: Feedforward NNs

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x})))
$$

Recall: Feedforward NNs

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x})))
$$

n features

Recall: Feedforward NNs

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x})))
$$

n features

Recall: Feedforward NNs

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x})))
$$

n features

Recall: Feedforward NNs

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x})))
$$

n features
(tanh, relu, ...)

Recall: Feedforward NNs

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x})))
$$

Recall: Feedforward NNs

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x})))
$$

Recall: Feedforward NNs

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x})))
$$

Recall: Feedforward NNs

$$
\begin{aligned}
& P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x}))) \\
& \\
& n \text { features } \\
& d \times l
\end{aligned}
$$

Recall: Backpropagation

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x})))
$$

Recall: Backpropagation

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x})))
$$

This Lecture

- Training
- Word representations
- word2vec/GloVe
- Evaluating word embeddings

Training Tips

Training Basics

Training Basics

- Basic formula: compute gradients on batch, use first-order opt. method

Training Basics

- Basic formula: compute gradients on batch, use first-order opt. method
- How to initialize? How to regularize? What optimizer to use?

Training Basics

- Basic formula: compute gradients on batch, use first-order opt. method
- How to initialize? How to regularize? What optimizer to use?
- This lecture: some practical tricks. Take deep learning or optimization courses to understand this further

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x})))
$$

How does initialization affect learning?

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x})))
$$

- How do we initialize V and W ? What consequences does this have?

How does initialization affect learning?

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x})))
$$

- How do we initialize V and W ? What consequences does this have?
- Nonconvex problem, so initialization matters!

How does initialization affect learning?

- Nonlinear model...how does this affect things?

How does initialization affect learning?

- Nonlinear model...how does this affect things?

How does initialization affect learning?

- Nonlinear model...how does this affect things?

How does initialization affect learning?

- Nonlinear model...how does this affect things?

- If cell activations are too large in absolute value, gradients are small

How does initialization affect learning?

- Nonlinear model...how does this affect things?

- If cell activations are too large in absolute value, gradients are small
- ReLU: larger dynamic range (all positive numbers), but can produce big values, can break down if everything is too negative

Initialization

Initialization

1) Can't use zeroes for parameters to produce hidden layers: all values in that hidden layer are always 0 and have gradients of 0 , never change

Initialization

1) Can't use zeroes for parameters to produce hidden layers: all values in that hidden layer are always 0 and have gradients of 0 , never change
2) Initialize too large and cells are saturated

Initialization

1) Can't use zeroes for parameters to produce hidden layers: all values in that hidden layer are always 0 and have gradients of 0 , never change
2) Initialize too large and cells are saturated

- Can do random uniform / normal initialization with appropriate scale

Initialization

1) Can't use zeroes for parameters to produce hidden layers: all values in that hidden layer are always 0 and have gradients of 0 , never change
2) Initialize too large and cells are saturated

- Can do random uniform / normal initialization with appropriate scale
- Xavier initializer: $U\left[-\sqrt{\frac{6}{\text { fan-in }+ \text { fan-out }}},+\sqrt{\frac{6}{\text { fan-in }+ \text { fan-out }}}\right]$

Initialization

1) Can't use zeroes for parameters to produce hidden layers: all values in that hidden layer are always 0 and have gradients of 0 , never change
2) Initialize too large and cells are saturated

- Can do random uniform / normal initialization with appropriate scale
- Xavier initializer: $U\left[-\sqrt{\frac{6}{\text { fan-in }+ \text { fan-out }}},+\sqrt{\frac{6}{\text { fan-in }+ \text { fan-out }}}\right]$
- Want variance of inputs and gradients for each layer to be the same

Initialization

1) Can't use zeroes for parameters to produce hidden layers: all values in that hidden layer are always 0 and have gradients of 0 , never change
2) Initialize too large and cells are saturated

- Can do random uniform / normal initialization with appropriate scale
- Xavier initializer: $U\left[-\sqrt{\frac{6}{\text { fan-in }+ \text { fan-out }}},+\sqrt{\frac{6}{\text { fan-in }+ \text { fan-out }}}\right]$
- Want variance of inputs and gradients for each layer to be the same
- Batch normalization (loffe and Szegedy, 2015): periodically shift+rescale each layer to have mean 0 and variance 1 over a batch (useful if net is deep)

Dropout

- Probabilistically zero out parts of the network during training to prevent overfitting, use whole network at test time

(a) Standard Neural Net

(b) After applying dropout.

Dropout

- Probabilistically zero out parts of the network during training to prevent overfitting, use whole network at test time
- Form of stochastic regularization

(a) Standard Neural Net

(b) After applying dropout.

Dropout

- Probabilistically zero out parts of the network during training to prevent overfitting, use whole network at test time
- Form of stochastic regularization
- Similar to benefits of ensembling: network needs to be robust to missing signals, so it has redundancy

(a) Standard Neural Net

(b) After applying dropout.

Dropout

- Probabilistically zero out parts of the network during training to prevent overfitting, use whole network at test time
- Form of stochastic regularization
- Similar to benefits of ensembling: network needs to be robust to missing signals, so it has redundancy

(a) Standard Neural Net

(b) After applying dropout.
- One line in Pytorch/Tensorflow

Optimizer

- Adam (Kingma and Ba, ICLR 2015) is very widely used
- Adaptive step size like Adagrad, incorporates momentum

Optimizer

- Adam (Kingma and Ba, ICLR 2015) is very widely used
- Adaptive step size like Adagrad, incorporates momentum

Optimizer

- Wilson et al. NIPS 2017: adaptive methods can actually perform badly at test time (Adam is in pink, SGD in black)

(e) Generative Parsing (Training Set)

(f) Generative Parsing (Development Set)

Optimizer

- Wilson et al. NIPS 2017: adaptive methods can actually perform badly at test time (Adam is in pink, SGD in black)
- Check dev set periodically, decrease learning rate if not making progress

(e) Generative Parsing (Training Set)

(f) Generative Parsing (Development Set)

Elements of Machine Learning

- Four elements of a machine learning method:

Elements of Machine Learning

- Four elements of a machine learning method:
- Model: feedforward, RNNs, CNNs can be defined in a uniform framework

Elements of Machine Learning

- Four elements of a machine learning method:
- Model: feedforward, RNNs, CNNs can be defined in a uniform framework
- Objective: many loss functions look similar, just changes the last layer of the neural network

Elements of Machine Learning

- Four elements of a machine learning method:
- Model: feedforward, RNNs, CNNs can be defined in a uniform framework
- Objective: many loss functions look similar, just changes the last layer of the neural network
- Inference: define the network, your library of choice takes care of it (mostly...)

Elements of Machine Learning

- Four elements of a machine learning method:
- Model: feedforward, RNNs, CNNs can be defined in a uniform framework
- Objective: many loss functions look similar, just changes the last layer of the neural network
- Inference: define the network, your library of choice takes care of it (mostly...)

- Training: lots of choices for optimization/hyperparameters

Word Representations

Word Representations

- Neural networks work very well at continuous data, but words are discrete

Word Representations

- Neural networks work very well at continuous data, but words are discrete
- Continuous model <-> expects continuous semantics from input

Word Representations

- Neural networks work very well at continuous data, but words are discrete
- Continuous model <-> expects continuous semantics from input
- "You shall know a word by the company it keeps" Firth (1957)

Discrete Word Representations

Discrete Word Representations

- Brown clusters: hierarchical agglomerative hard clustering (each word has one cluster, not some posterior distribution like in mixture models)

Discrete Word Representations

- Brown clusters: hierarchical agglomerative hard clustering (each word has one cluster, not some posterior distribution like in mixture models)

Discrete Word Representations

- Brown clusters: hierarchical agglomerative hard clustering (each word has one cluster, not some posterior distribution like in mixture models)

Discrete Word Representations

- Brown clusters: hierarchical agglomerative hard clustering (each word has one cluster, not some posterior distribution like in mixture models)

Discrete Word Representations

- Brown clusters: hierarchical agglomerative hard clustering (each word has one cluster, not some posterior distribution like in mixture models)

- Maximize $P\left(w_{i} \mid w_{i-1}\right)=P\left(c_{i} \mid c_{i-1}\right) P\left(w_{i} \mid c_{i}\right)$

Discrete Word Representations

- Brown clusters: hierarchical agglomerative hard clustering (each word has one cluster, not some posterior distribution like in mixture models)

- Maximize $P\left(w_{i} \mid w_{i-1}\right)=P\left(c_{i} \mid c_{i-1}\right) P\left(w_{i} \mid c_{i}\right)$
- Useful features for tasks like NER, not suitable for NNs

Discrete Word Representations

- Brown clusters: hierarchical agglomerative hard clustering (each word has one cluster, not some posterior distribution like in mixture models)

- Maximize $P\left(w_{i} \mid w_{i-1}\right)=P\left(c_{i} \mid c_{i-1}\right) P\left(w_{i} \mid c_{i}\right)$
- Useful features for tasks like NER, not suitable for NNs

Word Embeddings

- Part-of-speech tagging with FFNNs
??
Fed raises interest rates in order to ...
- Word embeddings for each word form input

Word Embeddings

- Part-of-speech tagging with FFNNs
??
Fed raises interest rates in order to ...
- Word embeddings for each word form input
- What properties should these vectors have?

other words, feats, etc.

Word Embeddings

Word Embeddings

Word Embeddings

- Want a vector space where similar words have similar embeddings

Word Embeddings

- Want a vector space where similar words have similar embeddings
the movie was great
\approx
the movie was good

Word Embeddings

- Want a vector space where similar words have similar embeddings
the movie was great
\approx
the movie was good
- Goal: come up with a way to produce these embeddings
word2vec/GloVe

Continuous Bag-of-Words

- Predict word from context
the dog bit the:man

Mikolov et al. (2013)

Continuous Bag-of-Words

- Predict word from context

Continuous Bag-of-Words

- Predict word from context
the dog bit the man

Continuous Bag-of-Words

- Predict word from context

Continuous Bag-of-Words

- Predict word from context

Continuous Bag-of-Words

- Predict word from context

$$
\begin{aligned}
& \text { gold label = bit, } \\
& \text { no manual labeling } \\
& \text { required! }
\end{aligned}
$$

Continuous Bag-of-Words

- Predict word from context

Continuous Bag-of-Words

- Predict word from context

- Parameters: $d \mathrm{x}|\mathrm{V}|$ (one d-length vector per voc word), $|\mathrm{V}| \times d$ output parameters (W)

Skip-Gram

- Predict one word of context from word
the dog bit the man

Mikolov et al. (2013)

Skip-Gram

- Predict one word of context from word
the dog bit the man -.....

Mikolov et al. (2013)

Skip-Gram

- Predict one word of context from word
the dog bit the man

Skip-Gram

- Predict one word of context from word
the dog bit the man

gold = dog

$$
P\left(w^{\prime} \mid w\right)=\operatorname{softmax}(W e(w))
$$

- Another training example: bit -> the

Skip-Gram

- Predict one word of context from word the dog bit the man

gold = dog

$$
P\left(w^{\prime} \mid w\right)=\operatorname{softmax}(W e(w))
$$

- Another training example: bit -> the
- Parameters: $d \mathrm{x}|\mathrm{V}|$ vectors, $|\mathrm{V}| \mathrm{x} d$ output parameters (W) (also usable as vectors!)

Hierarchical Softmax

$$
P\left(w \mid w_{-1}, w_{+1}\right)=\operatorname{softmax}\left(W\left(c\left(w_{-1}\right)+c\left(w_{+1}\right)\right)\right) \quad P\left(w^{\prime} \mid w\right)=\operatorname{softmax}(W e(w))
$$

Hierarchical Softmax

$P\left(w \mid w_{-1}, w_{+1}\right)=\operatorname{softmax}\left(W\left(c\left(w_{-1}\right)+c\left(w_{+1}\right)\right)\right) \quad P\left(w^{\prime} \mid w\right)=\operatorname{softmax}(W e(w))$

- Matmul + softmax over |V| is very slow to compute for CBOW and SG

Hierarchical Softmax

$P\left(w \mid w_{-1}, w_{+1}\right)=\operatorname{softmax}\left(W\left(c\left(w_{-1}\right)+c\left(w_{+1}\right)\right)\right) \quad P\left(w^{\prime} \mid w\right)=\operatorname{softmax}(W e(w))$

- Matmul + softmax over |V| is very slow to compute for CBOW and SG

- Standard softmax:
[|V|xd]

Hierarchical Softmax

$P\left(w \mid w_{-1}, w_{+1}\right)=\operatorname{softmax}\left(W\left(c\left(w_{-1}\right)+c\left(w_{+1}\right)\right)\right) \quad P\left(w^{\prime} \mid w\right)=\operatorname{softmax}(W e(w))$

- Matmul + softmax over |V| is very slow to compute for CBOW and SG

- Standard softmax:
[|V| $\times d$]

Hierarchical Softmax

$P\left(w \mid w_{-1}, w_{+1}\right)=\operatorname{softmax}\left(W\left(c\left(w_{-1}\right)+c\left(w_{+1}\right)\right)\right) \quad P\left(w^{\prime} \mid w\right)=\operatorname{softmax}(W e(w))$

- Matmul + softmax over |V| is very slow to compute for CBOW and SG

- Standard softmax:
[|V|xd]

Hierarchical Softmax

$P\left(w \mid w_{-1}, w_{+1}\right)=\operatorname{softmax}\left(W\left(c\left(w_{-1}\right)+c\left(w_{+1}\right)\right)\right) \quad P\left(w^{\prime} \mid w\right)=\operatorname{softmax}(W e(w))$

- Matmul + softmax over |V| is very slow to compute for CBOW and SG

- Standard softmax:
[|V| $\times d$]

Hierarchical Softmax

$P\left(w \mid w_{-1}, w_{+1}\right)=\operatorname{softmax}\left(W\left(c\left(w_{-1}\right)+c\left(w_{+1}\right)\right)\right) \quad P\left(w^{\prime} \mid w\right)=\operatorname{softmax}(W e(w))$

- Matmul + softmax over |V| is very slow to compute for CBOW and SG

- Standard softmax:
[|V| $\times d$]

Hierarchical Softmax

$P\left(w \mid w_{-1}, w_{+1}\right)=\operatorname{softmax}\left(W\left(c\left(w_{-1}\right)+c\left(w_{+1}\right)\right)\right) \quad P\left(w^{\prime} \mid w\right)=\operatorname{softmax}(W e(w))$

- Matmul + softmax over |V| is very slow to compute for CBOW and SG

- Huffman encode vocabulary, use binary classifiers to decide which branch to take
- Standard softmax:
[|V| $\times d$]

Hierarchical Softmax

$P\left(w \mid w_{-1}, w_{+1}\right)=\operatorname{softmax}\left(W\left(c\left(w_{-1}\right)+c\left(w_{+1}\right)\right)\right) \quad P\left(w^{\prime} \mid w\right)=\operatorname{softmax}(W e(w))$

- Matmul + softmax over |V| is very slow to compute for CBOW and SG

- Huffman encode vocabulary, use binary classifiers to decide which branch to take
- $\log (|\mathrm{V}|)$ binary decisions
- Standard softmax:
[|V| $\times d$]

Hierarchical Softmax

$P\left(w \mid w_{-1}, w_{+1}\right)=\operatorname{softmax}\left(W\left(c\left(w_{-1}\right)+c\left(w_{+1}\right)\right)\right) \quad P\left(w^{\prime} \mid w\right)=\operatorname{softmax}(W e(w))$

- Matmul + softmax over |V| is very slow to compute for CBOW and SG

- Huffman encode vocabulary, use binary classifiers to decide which branch to take
- log(|V|) binary decisions
- Standard softmax:
[|V| $\times d$]
- Hierarchical softmax:

Hierarchical Softmax

$P\left(w \mid w_{-1}, w_{+1}\right)=\operatorname{softmax}\left(W\left(c\left(w_{-1}\right)+c\left(w_{+1}\right)\right)\right) \quad P\left(w^{\prime} \mid w\right)=\operatorname{softmax}(W e(w))$

- Matmul + softmax over |V| is very slow to compute for CBOW and SG

- Huffman encode vocabulary, use binary classifiers to decide which branch to take
- $\log (|\mathrm{V}|)$ binary decisions
- Standard softmax:
[|V| $\times d$]
- Hierarchical softmax: $\log (|\mathrm{V}|)$ dot products of size d,

Hierarchical Softmax

$P\left(w \mid w_{-1}, w_{+1}\right)=\operatorname{softmax}\left(W\left(c\left(w_{-1}\right)+c\left(w_{+1}\right)\right)\right) \quad P\left(w^{\prime} \mid w\right)=\operatorname{softmax}(W e(w))$

- Matmul + softmax over |V| is very slow to compute for CBOW and SG

- Huffman encode vocabulary, use binary classifiers to decide which branch to take
- log(|V|) binary decisions
- Standard softmax:
[|V| $\times d$]
- Hierarchical softmax:
$\log (|\mathrm{V}|)$ dot products of size d,
$|\mathrm{V}| \times d$ parameters

Skip-Gram with Negative Sampling

Mikolov et al. (2013)

Skip-Gram with Negative Sampling

- Take (word, context) pairs and classify them as "real" or not. Create random negative examples by sampling from unigram distribution

Skip-Gram with Negative Sampling

- Take (word, context) pairs and classify them as "real" or not. Create random negative examples by sampling from unigram distribution
(bit, the) $=>+1$

Skip-Gram with Negative Sampling

- Take (word, context) pairs and classify them as "real" or not. Create random negative examples by sampling from unigram distribution
(bit, the) $=>+1$
(bit, cat) $=>-1$

Skip-Gram with Negative Sampling

- Take (word, context) pairs and classify them as "real" or not. Create random negative examples by sampling from unigram distribution
(bit, the) $=>+1$
(bit, cat) $=>-1$
(bit, a) =>-1
(bit, fish) => -1

Skip-Gram with Negative Sampling

- Take (word, context) pairs and classify them as "real" or not. Create random negative examples by sampling from unigram distribution
(bit, the) $=>+1$
(bit, cat) $=>-1$

$$
P(y=1 \mid w, c)=\frac{e^{w \cdot c}}{e^{w \cdot c}+1}
$$

(bit, fish) => -1

Skip-Gram with Negative Sampling

- Take (word, context) pairs and classify them as "real" or not. Create random negative examples by sampling from unigram distribution
(bit, the) $=>+1$
(bit, cat) $=>-1$
(bit, a) =>-1
(bit, fish) =>-1

$$
P(y=1 \mid w, c)=\frac{e^{w \cdot c}}{e^{w \cdot c}+1} \quad \text { words in similar }
$$ contexts select for similar c vectors

Skip-Gram with Negative Sampling

- Take (word, context) pairs and classify them as "real" or not. Create random negative examples by sampling from unigram distribution
(bit, the) $=>+1$
(bit, cat) $=>-1$
(bit, a) =>-1

$$
P(y=1 \mid w, c)=\frac{e^{w \cdot c}}{e^{w \cdot c}+1} \text { words in similar }
$$

(bit, fish) => -1 contexts select for similar c vectors

- $d \mathrm{x}|\mathrm{V}|$ vectors, $d \mathrm{x}|\mathrm{V}|$ context vectors (same \# of params as before)

Mikolov et al. (2013)

Skip-Gram with Negative Sampling

- Take (word, context) pairs and classify them as "real" or not. Create random negative examples by sampling from unigram distribution
(bit, the) $=>+1$
(bit, cat) $=>-1$
(bit, a) =>-1

$$
P(y=1 \mid w, c)=\frac{e^{w \cdot c}}{e^{w \cdot c}+1} \quad \text { words in similar }
$$ contexts select for

$$
(b i t, f i s h)=>-1
$$ similar c vectors

- $d \mathrm{x}|\mathrm{V}|$ vectors, $d \mathrm{x}|\mathrm{V}|$ context vectors (same \# of params as before)
- Objective $=\log P(y=1 \mid w, c)-\frac{1}{k} \sum_{i=1}^{n} \log P\left(y=0 \mid w_{i}, c\right)$

Mikolov et al. (2013)

Skip-Gram with Negative Sampling

- Take (word, context) pairs and classify them as "real" or not. Create random negative examples by sampling from unigram distribution
(bit, the) $=>+1$
(bit, cat) $=>-1$
(bit, a) =>-1

$$
P(y=1 \mid w, c)=\frac{e^{w \cdot c}}{e^{w \cdot c}+1} \quad \text { words in similar }
$$ contexts select for

$$
(b i t, f i s h)=>-1
$$ similar c vectors

- $d \mathrm{x}|\mathrm{V}|$ vectors, $d \mathrm{x}|\mathrm{V}|$ context vectors (same \# of params as before)
- Objective $=\log P(y=1 \mid w, c)-\frac{1}{k} \sum_{i=1}^{n} \log P\left(y=0 \mid w_{i}^{\text {sampled }}, c\right)$

Mikolov et al. (2013)

Connections with Matrix Factorization

- Skip-gram model looks at word-word co-occurrences and produces two types of vectors

Connections with Matrix Factorization

- Skip-gram model looks at word-word co-occurrences and produces two types of vectors

Connections with Matrix Factorization

- Skip-gram model looks at word-word co-occurrences and produces two types of vectors

Connections with Matrix Factorization

- Skip-gram model looks at word-word co-occurrences and produces two types of vectors

Connections with Matrix Factorization

- Skip-gram model looks at word-word co-occurrences and produces two types of vectors

- Looks almost like a matrix factorization...can we interpret it this way?

Skip-Gram as Matrix Factorization

Skip-gram objective exactly corresponds to factoring this matrix:

Skip-Gram as Matrix Factorization

Skip-gram objective exactly corresponds to factoring this matrix:

- If we sample negative examples from the uniform distribution over words

Skip-Gram as Matrix Factorization

Skip-gram objective exactly corresponds to factoring this matrix:

- If we sample negative examples from the uniform distribution over words
- ...and it's a weighted factorization problem (weighted by word freq)

GloVe (Global Vectors)

- Also operates on counts matrix, weighted regression on the log co-occurrence matrix

GloVe (Global Vectors)

- Also operates on counts matrix, weighted regression on the log co-occurrence matrix

- Loss $\left.=\sum_{i, j} f\left(\operatorname{count}\left(w_{i}, c_{j}\right)\right)\left(w_{i}^{\top} c_{j}+a_{i}+b_{j}-\log \operatorname{count}\left(w_{i}, c_{j}\right)\right)\right)^{2}$

GloVe (Global Vectors)

- Also operates on counts matrix, weighted regression on the log co-occurrence matrix

- Loss $\left.=\sum_{i, j} f\left(\operatorname{count}\left(w_{i}, c_{j}\right)\right)\left(w_{i}^{\top} c_{j}+a_{i}+b_{j}-\log \operatorname{count}\left(w_{i}, c_{j}\right)\right)\right)^{2}$
- Constant in the dataset size (just need counts), quadratic in voc size

GloVe (Global Vectors)

- Also operates on counts matrix, weighted regression on the log co-occurrence matrix

- Loss $\left.=\sum_{i, j} f\left(\operatorname{count}\left(w_{i}, c_{j}\right)\right)\left(w_{i}^{\top} c_{j}+a_{i}+b_{j}-\log \operatorname{count}\left(w_{i}, c_{j}\right)\right)\right)^{2}$
- Constant in the dataset size (just need counts), quadratic in voc size
- By far the most common (uncontextualized) word vectors used today (20,000+ citations)

Preview: Context-dependent Embeddings

- How to handle different word senses? One vector for balls
they dance at balls they hit the balls

Preview: Context-dependent Embeddings

- How to handle different word senses? One vector for balls
they dance at balls they hit the balls
- Train a neural language model to predict the next word given previous words in the sentence, use its internal representations as word vectors

Preview: Context-dependent Embeddings

- How to handle different word senses? One vector for balls

- Train a neural language model to predict the next word given previous words in the sentence, use its internal representations as word vectors

Preview: Context-dependent Embeddings

- How to handle different word senses? One vector for balls

they
hit the
- Train a neural language model to predict the next word given previous words in the sentence, use its internal representations as word vectors

Preview: Context-dependent Embeddings

- How to handle different word senses? One vector for balls

they
hit the balls
- Train a neural language model to predict the next word given previous words in the sentence, use its internal representations as word vectors
- Context-sensitive word embeddings: depend on rest of the sentence

Preview: Context-dependent Embeddings

- How to handle different word senses? One vector for balls

they
hit the
balls
- Train a neural language model to predict the next word given previous words in the sentence, use its internal representations as word vectors
- Context-sensitive word embeddings: depend on rest of the sentence
- Huge improvements across nearly all NLP tasks over GloVe

Evaluation

Evaluating Word Embeddings

- What properties of language should word embeddings capture?

Evaluating Word Embeddings

- What properties of language should word embeddings capture?
- Similarity: similar words are close to each other

Evaluating Word Embeddings

- What properties of language should word embeddings capture?
- Similarity: similar words are close to each other
- Analogy:

Evaluating Word Embeddings

- What properties of language should word embeddings capture?
- Similarity: similar words are close to each other
- Analogy:
good is to best as smart is to ???

Evaluating Word Embeddings

- What properties of language should word embeddings capture?
- Similarity: similar words are close to each other
- Analogy:
good is to best as smart is to ???
Paris is to France as Tokyo is to ???

Similarity

Method	WordSim Similarity	WordSim Relatedness	Bruni et al. MEN	Radinsky et al. M. Turk	Luong et al. Rare Words	Hill et al. SimLex
PPMI	.755	$\mathbf{. 6 9 7}$.745	.686	.462	.393
SVD	$\mathbf{. 7 9 3}$.691	$\mathbf{. 7 7 8}$.666	$\mathbf{. 5 1 4}$.432
SGNS	$\mathbf{. 7 9 3}$.685	.774	$\mathbf{. 6 9 3}$.470	$\mathbf{4 3 8}$
GloVe	.725	.604	.729	.632	.403	.398

- SVD = singular value decomposition on PMI matrix

Similarity

Method	WordSim Similarity	WordSim Relatedness	Bruni et al. MEN	Radinsky et al. M. Turk	Luong et al. Rare Words	Hill et al. SimLex
PPMI	.755	$\mathbf{. 6 9 7}$.745	.686	.462	.393
SVD	$\mathbf{. 7 9 3}$.691	$\mathbf{. 7 7 8}$.666	$\mathbf{. 5 1 4}$.432
SGNS	$\mathbf{7 9 3}$.685	.774	$\mathbf{. 6 9 3}$.470	. $\mathbf{4 3 8}$
GloVe	.725	.604	.729	.632	.403	.398

- SVD = singular value decomposition on PMI matrix
- GloVe does not appear to be the best when experiments are carefully controlled, but it depends on hyperparameters + these distinctions don't matter in practice

Hypernymy Detection

- Hypernyms: detective is a person, dog is a animal

Hypernymy Detection

- Hypernyms: detective is a person, dog is a animal
- Do word vectors encode these relationships?

Hypernymy Detection

- Hypernyms: detective is a person, dog is a animal
- Do word vectors encode these relationships?

Dataset	TM14	Kotlerman 2010	HypeNet	WordNet	Avg (10 datasets)
Random	52.0	30.8	24.5	55.2	23.2
Word2Vec + C	52.1	$\mathbf{3 9 . 5}$	20.7	$\mathbf{6 3 . 0}$	25.3
GE + C	53.9	36.0	21.6	58.2	26.1
GE + KL	52.0	39.4	23.7	54.4	25.9
DIVE + C• Δ S	$\mathbf{5 7 . 2}$	36.6	$\mathbf{3 2 . 0}$	60.9	$\mathbf{3 2 . 7}$

Hypernymy Detection

- Hypernyms: detective is a person, dog is a animal
- Do word vectors encode these relationships?

Dataset	TM14	Kotlerman 2010	HypeNet	WordNet	Avg (10 datasets)
Random	52.0	30.8	24.5	55.2	23.2
Word2Vec + C	52.1	$\mathbf{3 9 . 5}$	20.7	$\mathbf{6 3 . 0}$	25.3
GE + C	53.9	36.0	21.6	58.2	26.1
GE + KL	52.0	39.4	23.7	54.4	25.9
DIVE + C• Δ S	$\mathbf{5 7 . 2}$	36.6	$\mathbf{3 2 . 0}$	60.9	$\mathbf{3 2 . 7}$

- word2vec (SGNS) works barely better than random guessing here

Analogies

Analogies

Analogies

(king - man) + woman = queen

Analogies

(king - man) + woman = queen

Analogies

(king - man) + woman = queen

Analogies

(king - man) + woman = queen
$k i n g+($ woman - man $)=$ queen

- Why would this be?

Analogies

$$
\begin{aligned}
& (\text { king }- \text { man })+\text { woman }=\text { queen } \\
& \text { king }+(\text { woman }- \text { man })=\text { queen }
\end{aligned}
$$

- Why would this be?
- woman - man captures the difference in the contexts that these occur in

Analogies

(king - man) + woman $=$ queen
king + (woman - man) = queen

- Why would this be?
- woman - man captures the difference in the contexts that these occur in
- Dominant change: more "he" with man and "she" with woman - similar to difference between king and queen

Analogies

Method	Google Add / Mul	MSR Add Mul
	$.553 / .679$	$.306 / .535$
SVD	$.554 / .591$	$.408 / .468$
SGNS	$.676 / .688$	$.618 / .645$
GloVe	$.569 / .596$	$.533 / .580$

Analogies

Method	Google Add / Mul	MSR Add $/$ Mul
	$.553 / .679$	$.306 / .535$
SVD	$.554 / .591$	$.408 / .468$
SGNS	$.676 / .688$	$.618 / .645$
GloVe	$.569 / .596$	$.533 / .580$

- These methods can perform well on analogies on two different datasets using two different methods

Analogies

Method	Google Add $/$ Mul	MSR Add $/$ Mul
	$.553 / .679$	$.306 / .535$
SVD	$.554 / .591$	$.408 / .468$
SGNS	$.676 / .688$	$.618 / .645$
GloVe	$.569 / .596$	$.533 / .580$

- These methods can perform well on analogies on two different datasets using two different methods

Maximizing for b : $\operatorname{Add}=\cos \left(b, a_{2}-a_{1}+b_{1}\right) \quad$ Mul $=\frac{\cos \left(b_{2}, a_{2}\right) \cos \left(b_{2}, b_{1}\right)}{\cos \left(b_{2}, a_{1}\right)+\epsilon}$
Levy et al. (2015)

Using Semantic Knowledge

Faruqui et al. (2015)

Using Semantic Knowledge

- Structure derived from a resource like WordNet

Using Semantic Knowledge

- Structure derived from a resource like WordNet

Using Semantic Knowledge

- Structure derived from a resource like WordNet
- Doesn't help most problems

Using Word Embeddings

Using Word Embeddings

- Approach 1: learn embeddings as parameters from your data
- Often works pretty well

Using Word Embeddings

- Approach 1: learn embeddings as parameters from your data
- Often works pretty well
- Approach 2: initialize using GloVe/ELMo, keep fixed
- Faster because no need to update these parameters

Using Word Embeddings

- Approach 1: learn embeddings as parameters from your data
- Often works pretty well
- Approach 2: initialize using GloVe/ELMo, keep fixed
- Faster because no need to update these parameters
- Approach 3: initialize using GloVe, fine-tune
- Works best for some tasks, but not used for ELMo

Compositional Semantics

Compositional Semantics

- What if we want embedding representations for whole sentences?

Compositional Semantics

- What if we want embedding representations for whole sentences?
- Skip-thought vectors (Kiros et al., 2015), similar to skip-gram generalized to a sentence level (more later)

Compositional Semantics

- What if we want embedding representations for whole sentences?
- Skip-thought vectors (Kiros et al., 2015), similar to skip-gram generalized to a sentence level (more later)
- Is there a way we can compose vectors to make sentence representations? Summing?

Compositional Semantics

- What if we want embedding representations for whole sentences?
- Skip-thought vectors (Kiros et al., 2015), similar to skip-gram generalized to a sentence level (more later)
- Is there a way we can compose vectors to make sentence representations? Summing?
- Will return to this in a few weeks

Takeaways

Takeaways

- Lots to tune with neural networks

Takeaways

- Lots to tune with neural networks
- Training: optimizer, initializer, regularization (dropout), ...

Takeaways

- Lots to tune with neural networks
- Training: optimizer, initializer, regularization (dropout), ...
- Hyperparameters: dimensionality of word embeddings, layers, ...

Takeaways

- Lots to tune with neural networks
- Training: optimizer, initializer, regularization (dropout), ...
- Hyperparameters: dimensionality of word embeddings, layers, ...
- Word vectors: learning word -> context mappings has given way to matrix factorization approaches (constant in dataset size)

Takeaways

- Lots to tune with neural networks
- Training: optimizer, initializer, regularization (dropout), ...
- Hyperparameters: dimensionality of word embeddings, layers, ...
- Word vectors: learning word -> context mappings has given way to matrix factorization approaches (constant in dataset size)
- Lots of pretrained embeddings work well in practice, they capture some desirable properties

Takeaways

- Lots to tune with neural networks
- Training: optimizer, initializer, regularization (dropout), ...
- Hyperparameters: dimensionality of word embeddings, layers, ...
- Word vectors: learning word -> context mappings has given way to matrix factorization approaches (constant in dataset size)
- Lots of pretrained embeddings work well in practice, they capture some desirable properties
- Even better: context-sensitive word embeddings (ELMo)

Takeaways

- Lots to tune with neural networks
- Training: optimizer, initializer, regularization (dropout), ...
- Hyperparameters: dimensionality of word embeddings, layers, ...
- Word vectors: learning word -> context mappings has given way to matrix factorization approaches (constant in dataset size)
- Lots of pretrained embeddings work well in practice, they capture some desirable properties
- Even better: context-sensitive word embeddings (ELMo)
- Next time: RNNs and CNNs

