
Lecture 8: RNNs

Alan Ritter
(many slides from Greg Durrett)

Recall: Training Tips

Recall: Training Tips

‣ Parameter initialization is critical to get good gradients, some useful
heuristics (e.g., Xavier initializer)

Recall: Training Tips

‣ Parameter initialization is critical to get good gradients, some useful
heuristics (e.g., Xavier initializer)

‣ Dropout is an effective regularizer

Recall: Training Tips

‣ Parameter initialization is critical to get good gradients, some useful
heuristics (e.g., Xavier initializer)

‣ Dropout is an effective regularizer

‣ Think about your
optimizer: Adam
or tuned SGD
work well

Recall: Word Vectors

Recall: Word Vectors

good
enjoyable

bad

dog

great

is

Recall: Continuous Bag-of-Words
‣ Predict word from context the dog bit the man

Mikolov et al. (2013)

Recall: Continuous Bag-of-Words
‣ Predict word from context the dog bit the man

dog

the

Mikolov et al. (2013)

Recall: Continuous Bag-of-Words
‣ Predict word from context the dog bit the man

dog

the

+

sum, size d

Mikolov et al. (2013)

Recall: Continuous Bag-of-Words
‣ Predict word from context the dog bit the man

dog

the

+

sum, size d

softmaxMultiply 
by W

Mikolov et al. (2013)

Recall: Continuous Bag-of-Words
‣ Predict word from context the dog bit the man

dog

the

+

sum, size d P (w|w�1, w+1)

softmaxMultiply 
by W

Mikolov et al. (2013)

Recall: Continuous Bag-of-Words
‣ Predict word from context the dog bit the man

dog

the

+

sum, size d P (w|w�1, w+1)

softmaxMultiply 
by W

‣ Matrix factorization approaches useful for learning
vectors from really large data

Mikolov et al. (2013)

Analogies

queen
king

Analogies

queen
king

woman
man

Analogies

queen
king

woman
man

(king - man) + woman = queen

Analogies

queen
king

woman
man

(king - man) + woman = queen

Analogies

queen
king

woman
man

(king - man) + woman = queen

Analogies

queen
king

woman
man

(king - man) + woman = queen

king + (woman - man) = queen

Analogies

queen
king

woman
man

(king - man) + woman = queen

‣ Why would this be?

king + (woman - man) = queen

Analogies

queen
king

woman
man

(king - man) + woman = queen

‣ Why would this be?

king + (woman - man) = queen

Analogies

queen
king

woman
man

(king - man) + woman = queen

‣ Why would this be?

‣ woman - man captures the difference in 
the contexts that these occur in

king + (woman - man) = queen

Analogies

queen
king

woman
man

(king - man) + woman = queen

‣ Why would this be?

‣ woman - man captures the difference in 
the contexts that these occur in

king + (woman - man) = queen

‣ Dominant change: more “he” with man
and “she” with woman — similar to
difference between king and queen

Analogies

Levy et al. (2015)

Analogies

Levy et al. (2015)

‣ These methods can perform well on analogies on two different
datasets using two different methods

Analogies

Levy et al. (2015)

‣ These methods can perform well on analogies on two different
datasets using two different methods

cos(b, a2 � a1 + b1)Maximizing for b: Add = Mul = cos(b2, a2) cos(b2, b1)
cos(b2, a1) + ✏

Using Word Embeddings

Using Word Embeddings
‣ Approach 1: learn embeddings directly from data in your neural model,

no pretraining

‣ Often works pretty well

Using Word Embeddings
‣ Approach 1: learn embeddings directly from data in your neural model,

no pretraining

‣ Approach 2: pretrain using GloVe, keep fixed

‣ Faster because no need to update these parameters

‣ Often works pretty well

‣ Need to make sure GloVe vocabulary contains all the words you need

Using Word Embeddings
‣ Approach 1: learn embeddings directly from data in your neural model,

no pretraining

‣ Approach 2: pretrain using GloVe, keep fixed

‣ Approach 3: initialize using GloVe, fine-tune

‣ Faster because no need to update these parameters

‣ Not as commonly used anymore

‣ Often works pretty well

‣ Need to make sure GloVe vocabulary contains all the words you need

Compositional Semantics

Compositional Semantics
‣ What if we want embedding representations for whole sentences?

Compositional Semantics
‣ What if we want embedding representations for whole sentences?

‣ Skip-thought vectors (Kiros et al., 2015), similar to skip-gram generalized
to a sentence level

Compositional Semantics
‣ What if we want embedding representations for whole sentences?

‣ Skip-thought vectors (Kiros et al., 2015), similar to skip-gram generalized
to a sentence level

‣ Is there a way we can compose vectors to make sentence
representations? Summing? RNNs?

This Lecture

‣ Vanishing gradient problem

‣ Recurrent neural networks

‣ LSTMs / GRUs

‣ Applications / visualizations

RNN Basics

RNN Motivation
‣ Feedforward NNs can’t handle variable length input: each position in the

feature vector has fixed semantics

the movie was great

RNN Motivation
‣ Feedforward NNs can’t handle variable length input: each position in the

feature vector has fixed semantics

the movie was great

RNN Motivation
‣ Feedforward NNs can’t handle variable length input: each position in the

feature vector has fixed semantics

the movie was great that was great !

RNN Motivation
‣ Feedforward NNs can’t handle variable length input: each position in the

feature vector has fixed semantics

the movie was great that was great !

‣ These don’t look related (great is in two different orthogonal subspaces)

RNN Motivation
‣ Feedforward NNs can’t handle variable length input: each position in the

feature vector has fixed semantics

‣ Instead, we need to:

the movie was great that was great !

‣ These don’t look related (great is in two different orthogonal subspaces)

RNN Motivation
‣ Feedforward NNs can’t handle variable length input: each position in the

feature vector has fixed semantics

‣ Instead, we need to:

1) Process each word in a uniform way

the movie was great that was great !

‣ These don’t look related (great is in two different orthogonal subspaces)

RNN Motivation
‣ Feedforward NNs can’t handle variable length input: each position in the

feature vector has fixed semantics

‣ Instead, we need to:

1) Process each word in a uniform way

the movie was great that was great !

2) …while still exploiting the context that that token occurs in

‣ These don’t look related (great is in two different orthogonal subspaces)

RNN Abstraction
‣ Cell that takes some input x, has some hidden state h, and updates that

hidden state and produces output y (all vector-valued)

previous h next h

input x

output y

RNN Abstraction
‣ Cell that takes some input x, has some hidden state h, and updates that

hidden state and produces output y (all vector-valued)

previous h next h

(previous c) (next c)

input x

output y

RNN Uses
‣ Transducer: make some prediction for each element in a sequence

the movie was great

DT NN VBD JJ
output y = score for each tag, then softmax

RNN Uses
‣ Transducer: make some prediction for each element in a sequence

‣ Acceptor/encoder: encode a sequence into a fixed-sized vector and use
that for some purpose

the movie was great

predict sentiment (matmul + softmax)

the movie was great

DT NN VBD JJ
output y = score for each tag, then softmax

RNN Uses
‣ Transducer: make some prediction for each element in a sequence

‣ Acceptor/encoder: encode a sequence into a fixed-sized vector and use
that for some purpose

the movie was great

predict sentiment (matmul + softmax)

translate

the movie was great

DT NN VBD JJ
output y = score for each tag, then softmax

RNN Uses
‣ Transducer: make some prediction for each element in a sequence

‣ Acceptor/encoder: encode a sequence into a fixed-sized vector and use
that for some purpose

the movie was great

predict sentiment (matmul + softmax)

translate

the movie was great

DT NN VBD JJ

paraphrase/compress

output y = score for each tag, then softmax

Elman Networks

input xt

prev
hidden
state ht-1 ht

output yt

Elman (1990)

Elman Networks

input xt

prev
hidden
state ht-1 ht

output yt

‣ Updates hidden state based on input
and current hidden state

Elman (1990)

ht = tanh(Wxt + V ht�1 + bh)

Elman Networks

input xt

prev
hidden
state ht-1 ht

output yt

‣ Computes output from hidden state

‣ Updates hidden state based on input
and current hidden state

yt = tanh(Uht + by)

Elman (1990)

ht = tanh(Wxt + V ht�1 + bh)

Elman Networks

input xt

prev
hidden
state ht-1 ht

output yt

‣ Computes output from hidden state

‣ Updates hidden state based on input
and current hidden state

‣ Long history! (invented in the late 1980s)

yt = tanh(Uht + by)

Elman (1990)

ht = tanh(Wxt + V ht�1 + bh)

Training Elman Networks

the movie was great

predict sentiment

Training Elman Networks

the movie was great

predict sentiment

‣ “Backpropagation through time”: build the network as one big
computation graph, some parameters are shared

Training Elman Networks

the movie was great

predict sentiment

‣ “Backpropagation through time”: build the network as one big
computation graph, some parameters are shared

‣ RNN potentially needs to learn how to “remember” information for a
long time!

it was my favorite movie of 2016, though it wasn’t without problems -> +

Training Elman Networks

the movie was great

predict sentiment

‣ “Backpropagation through time”: build the network as one big
computation graph, some parameters are shared

‣ RNN potentially needs to learn how to “remember” information for a
long time!

it was my favorite movie of 2016, though it wasn’t without problems -> +

‣ “Correct” parameter update is to do a better job of remembering the
sentiment of favorite

Vanishing Gradient

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Vanishing Gradient

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Vanishing Gradient

<- gradient

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Vanishing Gradient

<- gradient<- smaller gradient

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Vanishing Gradient

‣ Gradient diminishes going through tanh; if
not in [-2, 2], gradient is almost 0

<- gradient<- smaller gradient

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Vanishing Gradient

‣ Gradient diminishes going through tanh; if
not in [-2, 2], gradient is almost 0

<- gradient<- smaller gradient<- tiny gradient

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs/GRUs

Gated Connections
‣ Designed to fix “vanishing gradient” problem using gates

ht = ht�1 � f + func(xt) ht = tanh(Wxt + V ht�1 + bh)

gated Elman

Gated Connections
‣ Designed to fix “vanishing gradient” problem using gates

‣ Vector-valued “forget gate” f computed
based on input and previous hidden state

‣ Sigmoid: elements of f are in (0, 1)

f = �(W xfxt +Whfht�1)

ht = ht�1 � f + func(xt) ht = tanh(Wxt + V ht�1 + bh)

gated Elman

Gated Connections
‣ Designed to fix “vanishing gradient” problem using gates

‣ Vector-valued “forget gate” f computed
based on input and previous hidden state

‣ Sigmoid: elements of f are in (0, 1)

f = �(W xfxt +Whfht�1)

ht = ht�1 � f + func(xt)

=

ht-1 f ht

ht = tanh(Wxt + V ht�1 + bh)

gated Elman

Gated Connections
‣ Designed to fix “vanishing gradient” problem using gates

‣ Vector-valued “forget gate” f computed
based on input and previous hidden state

‣ Sigmoid: elements of f are in (0, 1)

f = �(W xfxt +Whfht�1)

ht = ht�1 � f + func(xt)

=

ht-1 f ht

ht = tanh(Wxt + V ht�1 + bh)

gated Elman

‣ If f ≈ 1, we simply sum up a function of
all inputs — gradient doesn’t vanish!

LSTMs

‣ “Cell” c in addition to hidden state h

ct = ct�1 � f + func(xt,ht�1)

LSTMs

‣ “Cell” c in addition to hidden state h

‣ Vector-valued forget gate f depends on the h hidden state

ct = ct�1 � f + func(xt,ht�1)

f = �(W xfxt +Whfht�1)

LSTMs

‣ “Cell” c in addition to hidden state h

‣ Vector-valued forget gate f depends on the h hidden state

‣ Basic communication flow: x -> c -> h -> output, each step of this
process is gated in addition to gates from previous timesteps

ct = ct�1 � f + func(xt,ht�1)

f = �(W xfxt +Whfht�1)

LSTMs

xj

f

hjhj-1

cj-1 cj

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

‣ f, i, o are gates that control information flow
‣ g reflects the main computation of the cell

LSTMs

xj

f
g

i

hjhj-1

cj-1 cj

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

‣ f, i, o are gates that control information flow
‣ g reflects the main computation of the cell

LSTMs

xj

f
g

i
o

hjhj-1

cj-1 cj

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

‣ f, i, o are gates that control information flow
‣ g reflects the main computation of the cell

LSTMs

xj

f
g

i
o

hjhj-1

cj-1 cj

LSTMs

xj

f
g

i
o

hjhj-1

cj-1 cj

‣ Can we ignore the old value of c for this timestep?

LSTMs

xj

f
g

i
o

hjhj-1

cj-1 cj

‣ Can we ignore the old value of c for this timestep?
‣ Can an LSTM sum up its inputs x?

LSTMs

xj

f
g

i
o

hjhj-1

cj-1 cj

‣ Can we ignore the old value of c for this timestep?

‣ Can we ignore a particular input x?
‣ Can an LSTM sum up its inputs x?

LSTMs

xj

f
g

i
o

hjhj-1

cj-1 cj

‣ Can we ignore the old value of c for this timestep?

‣ Can we ignore a particular input x?
‣ Can an LSTM sum up its inputs x?

‣ Can we output something without changing c?

LSTMs

xj

f
g

i
o

hjhj-1

cj-1 cj

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

‣ Ignoring recurrent state entirely:

‣ Lets us get feedforward layer over token

LSTMs

xj

f
g

i
o

hjhj-1

cj-1 cj

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

‣ Ignoring recurrent state entirely:

‣ Lets us discard stopwords

‣ Lets us get feedforward layer over token

‣ Ignoring input:

LSTMs

xj

f
g

i
o

hjhj-1

cj-1 cj

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

‣ Ignoring recurrent state entirely:

‣ Lets us discard stopwords

‣ Summing inputs:

‣ Lets us get feedforward layer over token

‣ Ignoring input:

‣ Lets us compute a bag-of-words 
representation

LSTMs

<- gradientsimilar gradient <-

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs

‣ Gradient still diminishes, but in a controlled way and generally by less —
usually initialize forget gate = 1 to remember everything to start

<- gradientsimilar gradient <-

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

GRUs

xj

f
g

i
o

hjhj-1

cj-1 cj

hj-1

sj-1

xj

sj

‣ LSTM: more complex and
slower, may work a bit better

X

hj

sj

σ X

+
1-z z

σ tanh
r

GRUs

xj

f
g

i
o

hjhj-1

cj-1 cj

hj-1

sj-1

xj

sj

‣ GRU: faster, a bit simpler‣ LSTM: more complex and
slower, may work a bit better

X

hj

sj

σ X

+
1-z z

σ tanh
r

GRUs

xj

f
g

i
o

hjhj-1

cj-1 cj

hj-1

sj-1

xj

sj

‣ GRU: faster, a bit simpler‣ LSTM: more complex and
slower, may work a bit better

X

hj

sj

σ X

+
1-z z

σ tanh
r

‣ Two gates: z (forget, mixes s and
h) and r (mixes h and x)

What do RNNs produce?
=

‣ Encoding of the sentence — can pass this a decoder or make a
classification decision about the sentence

the movie was great

What do RNNs produce?

‣ Encoding of each word — can pass this to another layer to make a
prediction (can also pool these to get a different sentence encoding)

=

‣ Encoding of the sentence — can pass this a decoder or make a
classification decision about the sentence

the movie was great

What do RNNs produce?

‣ Encoding of each word — can pass this to another layer to make a
prediction (can also pool these to get a different sentence encoding)

=

‣ Encoding of the sentence — can pass this a decoder or make a
classification decision about the sentence

the movie was great

‣ RNN can be viewed as a transformation of a sequence of vectors into a
sequence of context-dependent vectors

Multilayer Bidirectional RNN

the movie was great

Multilayer Bidirectional RNN

the movie was great

Multilayer Bidirectional RNN

the movie was great the movie was great

Multilayer Bidirectional RNN

‣ Sentence classification
based on concatenation
of both final outputs

the movie was great the movie was great

Multilayer Bidirectional RNN

‣ Sentence classification
based on concatenation
of both final outputs

‣ Token classification based on
concatenation of both directions’
token representations

the movie was great the movie was great

Training RNNs

the movie was great

Training RNNs

the movie was great

P (y|x)

Training RNNs

the movie was great

‣ Loss = negative log likelihood of probability of gold label (or use SVM
or other loss)

P (y|x)

Training RNNs

the movie was great

‣ Loss = negative log likelihood of probability of gold label (or use SVM
or other loss)

P (y|x)

‣ Backpropagate through entire network

Training RNNs

the movie was great

‣ Loss = negative log likelihood of probability of gold label (or use SVM
or other loss)

P (y|x)

‣ Backpropagate through entire network

‣ Example: sentiment analysis

Training RNNs

the movie was great

Training RNNs

the movie was great

P (ti|x)

Training RNNs

the movie was great

‣ Loss = negative log likelihood of probability of gold predictions,
summed over the tags

P (ti|x)

Training RNNs

the movie was great

‣ Loss = negative log likelihood of probability of gold predictions,
summed over the tags

‣ Loss terms filter back through network

P (ti|x)

Training RNNs

the movie was great

‣ Loss = negative log likelihood of probability of gold predictions,
summed over the tags

‣ Loss terms filter back through network

P (ti|x)

Training RNNs

the movie was great

‣ Loss = negative log likelihood of probability of gold predictions,
summed over the tags

‣ Loss terms filter back through network

P (ti|x)

‣ Example: language modeling (predict next word given context)

Applications

What can LSTMs model?

What can LSTMs model?
‣ Sentiment

‣ Language models

‣ Encode one sentence, predict

‣ Move left-to-right, per-token prediction

What can LSTMs model?
‣ Sentiment

‣ Translation

‣ Language models

‣ Encode one sentence, predict

‣ Move left-to-right, per-token prediction

What can LSTMs model?
‣ Sentiment

‣ Translation

‣ Language models

‣ Encode one sentence, predict

‣ Move left-to-right, per-token prediction

‣ Encode sentence + then decode, use token predictions for attention
weights (later in the course)

Visualizing LSTMs

Karpathy et al. (2015)

Visualizing LSTMs
‣ Train character LSTM language model (predict next character based on

history) over two datasets: War and Peace and Linux kernel source code

Karpathy et al. (2015)

Visualizing LSTMs
‣ Train character LSTM language model (predict next character based on

history) over two datasets: War and Peace and Linux kernel source code

Karpathy et al. (2015)

‣ Visualize activations of specific cells (components of c) to understand them

Visualizing LSTMs
‣ Train character LSTM language model (predict next character based on

history) over two datasets: War and Peace and Linux kernel source code

Karpathy et al. (2015)

‣ Visualize activations of specific cells (components of c) to understand them

Visualizing LSTMs
‣ Train character LSTM language model (predict next character based on

history) over two datasets: War and Peace and Linux kernel source code

Karpathy et al. (2015)

‣ Counter: know when to generate \n
‣ Visualize activations of specific cells (components of c) to understand them

Visualizing LSTMs

Karpathy et al. (2015)

‣ Visualize activations of specific cells to see what they track

‣ Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

Visualizing LSTMs

Karpathy et al. (2015)

‣ Binary switch: tells us if we’re in a quote or not
‣ Visualize activations of specific cells to see what they track

‣ Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

Visualizing LSTMs

Karpathy et al. (2015)

‣ Visualize activations of specific cells to see what they track

‣ Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

Visualizing LSTMs

Karpathy et al. (2015)

‣ Stack: activation based on indentation
‣ Visualize activations of specific cells to see what they track

‣ Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

Visualizing LSTMs

Karpathy et al. (2015)

‣ Visualize activations of specific cells to see what they track

‣ Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

Visualizing LSTMs

Karpathy et al. (2015)

‣ Uninterpretable: probably doing double-duty, or only makes sense in the
context of another activation

‣ Visualize activations of specific cells to see what they track

‣ Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

What can LSTMs model?
‣ Sentiment

‣ Translation

‣ Language models

‣ Encode one sentence, predict

‣ Move left-to-right, per-token prediction

‣ Encode sentence + then decode, use token predictions for attention
weights (next lecture)

What can LSTMs model?
‣ Sentiment

‣ Translation

‣ Language models

‣ Encode one sentence, predict

‣ Move left-to-right, per-token prediction

‣ Encode sentence + then decode, use token predictions for attention
weights (next lecture)

‣ Textual entailment

What can LSTMs model?
‣ Sentiment

‣ Translation

‣ Language models

‣ Encode one sentence, predict

‣ Move left-to-right, per-token prediction

‣ Encode sentence + then decode, use token predictions for attention
weights (next lecture)

‣ Textual entailment

‣ Encode two sentences, predict

Natural Language Inference

A boy plays in the snow A boy is outside

Premise Hypothesis

Natural Language Inference

A boy plays in the snow A boy is outsideentails

Premise Hypothesis

Natural Language Inference

A man inspects the uniform of a figure The man is sleeping

A boy plays in the snow A boy is outsideentails

Premise Hypothesis

Natural Language Inference

A man inspects the uniform of a figure The man is sleeping

A boy plays in the snow A boy is outsideentails

contradicts

Premise Hypothesis

Natural Language Inference

A man inspects the uniform of a figure The man is sleeping

An older and younger man smiling Two men are smiling and
laughing at cats playing

A boy plays in the snow A boy is outsideentails

contradicts

Premise Hypothesis

Natural Language Inference

A man inspects the uniform of a figure The man is sleeping

An older and younger man smiling Two men are smiling and
laughing at cats playing

A boy plays in the snow A boy is outsideentails

contradicts

neutral

Premise Hypothesis

Natural Language Inference

A man inspects the uniform of a figure The man is sleeping

An older and younger man smiling Two men are smiling and
laughing at cats playing

A boy plays in the snow A boy is outsideentails

contradicts

neutral

‣ Long history of this task: “Recognizing Textual Entailment” challenge in
2006 (Dagan, Glickman, Magnini)

Premise Hypothesis

Natural Language Inference

A man inspects the uniform of a figure The man is sleeping

An older and younger man smiling Two men are smiling and
laughing at cats playing

A boy plays in the snow A boy is outsideentails

contradicts

neutral

‣ Long history of this task: “Recognizing Textual Entailment” challenge in
2006 (Dagan, Glickman, Magnini)

‣ Early datasets: small (hundreds of pairs), very ambitious (lots of world
knowledge, temporal reasoning, etc.)

Premise Hypothesis

SNLI Dataset

Bowman et al. (2015)

‣ Show people captions for (unseen) images and solicit entailed / neural /
contradictory statements

‣ >500,000 sentence pairs

SNLI Dataset

Bowman et al. (2015)

‣ Show people captions for (unseen) images and solicit entailed / neural /
contradictory statements

‣ >500,000 sentence pairs

‣ Encode each sentence and process

SNLI Dataset

Bowman et al. (2015)

‣ Show people captions for (unseen) images and solicit entailed / neural /
contradictory statements

‣ >500,000 sentence pairs

100D LSTM: 78% accuracy
‣ Encode each sentence and process

SNLI Dataset

Bowman et al. (2015)

‣ Show people captions for (unseen) images and solicit entailed / neural /
contradictory statements

‣ >500,000 sentence pairs

100D LSTM: 78% accuracy
300D LSTM: 80% accuracy 
 (Bowman et al., 2016)

‣ Encode each sentence and process

SNLI Dataset

Bowman et al. (2015)

‣ Show people captions for (unseen) images and solicit entailed / neural /
contradictory statements

‣ >500,000 sentence pairs

100D LSTM: 78% accuracy
300D LSTM: 80% accuracy 
 (Bowman et al., 2016)
300D BiLSTM: 83% accuracy

 (Liu et al., 2016)

‣ Encode each sentence and process

SNLI Dataset

Bowman et al. (2015)

‣ Show people captions for (unseen) images and solicit entailed / neural /
contradictory statements

‣ >500,000 sentence pairs

100D LSTM: 78% accuracy
300D LSTM: 80% accuracy 
 (Bowman et al., 2016)
300D BiLSTM: 83% accuracy

 (Liu et al., 2016)

‣ Encode each sentence and process

‣ Later: better models for this

Takeaways
‣ RNNs can transduce inputs (produce one output for each input) or

compress the whole input into a vector

‣ Useful for a range of tasks with sequential input: sentiment analysis,
language modeling, natural language inference, machine translation

‣ Next time: CNNs and neural CRFs

