
CS 7650: Natural Language Processing

Alan Ri:er
(many slides from Greg Durrett)



Administrivia

‣ Course website: 
h:ps://ari:er.github.io/CS-7650/

‣ Piazza and Gradescope: links on the course website 
‣ We will do our best to make sure quesJons about the 

homework, etc. get answered within 24 hours

‣ TA Office hours: 
‣ See spreadsheet
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There will be a lot of math and programming!
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‣ Problem Set 1 (math review) is out now on Gradescope (due Jan 25)

‣ 3 Programming Projects (fairly substanJal implementaJon effort) 

‣ Text classificaJon 

‣ Named enJty recogniJon (BiLSTM-CNN-CRF) 

‣ Neural chatbot (Seq2Seq with a:enJon)

‣ 2 wri:en assignments + midterm exam 

‣ Mostly math problems related to ML / NLP

‣ Final project (details on course website, will discuss later)



Free Textbooks!

‣ 2 really awesome free textbooks available 

‣ There will be assigned readings from both 

‣ Both freely available online

https://web.stanford.edu/~jurafsky/slp3/
https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes.pdf


Programming Projects: ComputaJon
‣ Modern NLP methods require non-trivial computaJon 

‣ Training neural networks with many parameters can take a long Jme (it is a very 
good idea to start working on the assignments early!) 

‣ You probably want to use a GPU 

‣ Google Colab: free GPUs (some limitaJons) 

‣ The programming projects are designed with Colab in mind
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AutomaJc SummarizaJon

…

…

One of New America’s 
writers posted a statement 
criJcal of Google. Eric 
Schmidt, Google’s CEO, 
was displeased. 

The writer and his team 
were dismissed.

provide missing 
context

paraphrase to 
provide clarity

compress 
text
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NLP Analysis Pipeline

SyntacJc parses

Coreference resoluJon

EnJty disambiguaJon

Discourse analysis

Summarize

Extract informaJon

Answer quesJons

IdenJfy senJment

‣ NLP is about building these pieces!
Translate

Text Analysis Applica.onsText Annota.ons

‣ All of these components are modeled with staJsJcal 
approaches trained with machine learning
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Labels

Sequences/tags

Trees

Text

the movie was good +
Beyoncé had one of the best videos of all 6me subjec.ve

Tom Cruise  stars in the new  Mission Impossible  film
PERSON MOVIE

I   eat   cake   with   icing

PPNP
S

NP
VP

VBZ NN
flights to Miami

λx. flight(x) ∧ dest(x)=Miami
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How do we use these representaJons?

Labels
Sequences
Trees

Text AnalysisText

‣ Main quesJon: What representaJons do we need for language? What do 
we want to know about it?

‣ Boils down to: what ambiguiJes do we need to resolve?

…

Applica.ons

Tree transducers (for machine 
translaJon)

Extract syntacJc features

Tree-structured neural networks

end-to-end models …



Why is language hard? 
(and how can we handle that?)
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‣ Hector Levesque (2011): “Winograd schema challenge” (named aner Terry 

Winograd, the creator of SHRDLU)

The city council refused the demonstrators a permit because they ______ violence

they feared

they advocated

‣ This is so complicated that it’s an AI challenge problem! (AI-complete)

‣ ReferenJal/semanJc ambiguity
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Language is Really Ambiguous!
‣ There aren’t just one or two possibiliJes which are resolved pragmaJcally

‣ Combinatorially many possibiliJes, many you won’t even register as ambiguiJes, 
but systems sJll have to resolve them

It is really nice out

il fait vraiment beau It’s really nice
The weather is beauJful
It is really beauJful outside
He makes truly beauJful

It fact actually handsome
He makes truly boyfriend



‣ Lots of data!

slide credit: Dan Klein
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‣ World knowledge: have access to informaJon beyond the training data

DOJ   greenlights  Disney - Fox merger

metaphor; 
“approves”

Department of Jus6ce

‣ What is a green light? How do we understand what 
“green lighJng” does?
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Structured PredicJon

‣ Supervised techniques work well on very li:le data

annotaJon 
(two hours!)

unsupervised 
learning

‣ Even neural nets can do pre:y well!

“Learning a Part-of-Speech Tagger from Two Hours of AnnotaJon” 
Garre:e and Baldridge (2013)

be:er system!

‣ All of these techniques are data-driven! Some data is naturally occurring, but may 
need to label



Bahdanau et al. (2014)DeNero et al. (2008)
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Does manual structure have a place?

‣ Neural nets don’t always work out of domain!

Moosavi and Strube (2017)

‣ Coreference: rule-based systems are 
sJll about as good as deep learning 
out-of-domain

‣ LORELEI: transiJon point below which phrase-
based systems are be:er

‣ Why is this? InducJve bias!

‣ Can mulJ-task learning help?

Wikipedia

Newswire
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Trump Pope family watch a hundred years a year in the White House balcony

‣ Maybe manual structure would help…

Does manual structure have a place?
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Where are we?

‣ NLP consists of: analyzing and building representaJons for text, solving problems 
involving text

‣ These problems are hard because language is ambiguous, requires drawing on 
data, knowledge, and linguisJcs to solve

‣ Knowing which techniques use requires understanding dataset size, problem 
complexity, and a lot of tricks!

‣ NLP encompasses all of these things
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NLP vs. ComputaJonal LinguisJcs

‣ ComputaJonal tools for other purposes: literary theory, poliJcal science…

Bamman, O’Connor, Smith (2013)
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Course Goals

‣ Cover fundamental machine learning techniques used in NLP

‣ Make you a “producer” rather than a “consumer” of NLP tools

‣ Cover modern NLP problems encountered in the literature: what are the acJve 
research topics in 2021?

‣ The three assignments should teach you what you need to know to 
understand nearly any system in the literature

‣ Understand how to look at language data and approach linguisJc phenomena
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Assignments
‣ 3 Homework Assignments 
‣ ImplementaJon-oriented 
‣ ~2 weeks per assignment, 3 “slip days” for automaJc extensions

These projects require understanding of the concepts, ability to write performant 
code, and ability to think about how to debug complex systems. They are 
challenging, so start early!



Final Project

‣ Final project (20%) 
‣ Groups of 3-4 preferred, 1 is possible. 
‣ Good idea to talk to run your project idea by me in office hours or email. 
‣ 4 page report + final project presentaJon.



Gather.town Hangout


