
Lecture 13: Machine Transla3on II

Alan Ri8er
(many slides from Greg Durrett)

Neural MT Details

Encoder-Decoder MT

Sutskever et al. (2014)

‣ Sutskever seq2seq paper: first major applica3on of LSTMs to NLP

Encoder-Decoder MT

Sutskever et al. (2014)

‣ Sutskever seq2seq paper: first major applica3on of LSTMs to NLP

‣ Basic encoder-decoder with beam search

Encoder-Decoder MT

Sutskever et al. (2014)

‣ Sutskever seq2seq paper: first major applica3on of LSTMs to NLP

‣ Basic encoder-decoder with beam search

Encoder-Decoder MT

Sutskever et al. (2014)‣ SOTA = 37.0 — not all that compe33ve…

‣ Sutskever seq2seq paper: first major applica3on of LSTMs to NLP

‣ Basic encoder-decoder with beam search

Encoder-Decoder MT
‣ Be8er model from seq2seq lectures: encoder-decoder with a8en3on

and copying for rare words

the movie was great

h1 h2 h3 h4

<s>

h̄1

c1

distribu3on over vocab + copying

…

le

Results: WMT English-French

Results: WMT English-French
‣ 12M sentence pairs

Results: WMT English-French

Classic phrase-based system: ~33 BLEU, uses addi3onal target-language data

‣ 12M sentence pairs

Results: WMT English-French

Classic phrase-based system: ~33 BLEU, uses addi3onal target-language data

Rerank with LSTMs: 36.5 BLEU (long line of work here; Devlin+ 2014)

‣ 12M sentence pairs

Results: WMT English-French

Classic phrase-based system: ~33 BLEU, uses addi3onal target-language data

Rerank with LSTMs: 36.5 BLEU (long line of work here; Devlin+ 2014)

Sutskever+ (2014) seq2seq single: 30.6 BLEU

‣ 12M sentence pairs

Results: WMT English-French

Classic phrase-based system: ~33 BLEU, uses addi3onal target-language data

Rerank with LSTMs: 36.5 BLEU (long line of work here; Devlin+ 2014)

Sutskever+ (2014) seq2seq single: 30.6 BLEU

Sutskever+ (2014) seq2seq ensemble: 34.8 BLEU

‣ 12M sentence pairs

Results: WMT English-French

Classic phrase-based system: ~33 BLEU, uses addi3onal target-language data

Rerank with LSTMs: 36.5 BLEU (long line of work here; Devlin+ 2014)

Sutskever+ (2014) seq2seq single: 30.6 BLEU

Sutskever+ (2014) seq2seq ensemble: 34.8 BLEU

‣ But English-French is a really easy language pair and there’s tons of data
for it! Does this approach work for anything harder?

Luong+ (2015) seq2seq ensemble with a8en3on and rare word handling:
37.5 BLEU

‣ 12M sentence pairs

Results: WMT English-German

‣ Not nearly as good in absolute BLEU, but not really comparable across
languages

Classic phrase-based system: 20.7 BLEU

Luong+ (2014) seq2seq: 14 BLEU

Luong+ (2015) seq2seq ensemble with rare word handling: 23.0 BLEU

‣ 4.5M sentence pairs

Results: WMT English-German

‣ Not nearly as good in absolute BLEU, but not really comparable across
languages

Classic phrase-based system: 20.7 BLEU

Luong+ (2014) seq2seq: 14 BLEU

‣ French, Spanish = easiest
German, Czech = harder
Japanese, Russian = hard (gramma3cally different, lots of morphology…)

Luong+ (2015) seq2seq ensemble with rare word handling: 23.0 BLEU

‣ 4.5M sentence pairs

MT Examples

Luong et al. (2015)

‣ NMT systems can hallucinate words, especially when not using a8en3on
— phrase-based doesn’t do this

‣ best = with a8en3on, base = no a8en3on

MT Examples

Luong et al. (2015)

‣ best = with a8en3on, base = no a8en3on

Zhang et al. (2017)

‣ NMT can repeat itself if it gets confused (pH or pH)

‣ Phrase-based MT omen gets chunks right, may have more subtle
ungramma3cali3es

MT Examples

Rare Words: Word Piece Models
‣ Use Huffman encoding on a corpus, keep most common k (~10,000)

character sequences for source and target

Input: _the _eco tax _port i co _in _Po nt - de - Bu is …

Output: _le _port ique _éco taxe _de _Pont - de - Bui s

Wu et al. (2016)

Rare Words: Word Piece Models
‣ Use Huffman encoding on a corpus, keep most common k (~10,000)

character sequences for source and target

‣ Captures common words and parts of rare words

Input: _the _eco tax _port i co _in _Po nt - de - Bu is …

Output: _le _port ique _éco taxe _de _Pont - de - Bui s

Wu et al. (2016)

Rare Words: Word Piece Models
‣ Use Huffman encoding on a corpus, keep most common k (~10,000)

character sequences for source and target

‣ Captures common words and parts of rare words

Input: _the _eco tax _port i co _in _Po nt - de - Bu is …

Output: _le _port ique _éco taxe _de _Pont - de - Bui s

‣ Subword structure may make it easier to translate

Wu et al. (2016)

Rare Words: Word Piece Models
‣ Use Huffman encoding on a corpus, keep most common k (~10,000)

character sequences for source and target

‣ Captures common words and parts of rare words

Input: _the _eco tax _port i co _in _Po nt - de - Bu is …

Output: _le _port ique _éco taxe _de _Pont - de - Bui s

‣ Subword structure may make it easier to translate

‣ Model balances transla3ng and translitera3ng without explicit switching
Wu et al. (2016)

Rare Words: Byte Pair Encoding

Sennrich et al. (2016)

‣ Input: a dic3onary of words represented as characters
‣ Simpler procedure, based only on the dic3onary

Rare Words: Byte Pair Encoding

Sennrich et al. (2016)

‣ Input: a dic3onary of words represented as characters
‣ Simpler procedure, based only on the dic3onary

Rare Words: Byte Pair Encoding

‣ Count bigram character cooccurrences

Sennrich et al. (2016)

‣ Input: a dic3onary of words represented as characters
‣ Simpler procedure, based only on the dic3onary

Rare Words: Byte Pair Encoding

‣ Count bigram character cooccurrences

Sennrich et al. (2016)

‣ Merge the most frequent pair of
adjacent characters

‣ Input: a dic3onary of words represented as characters
‣ Simpler procedure, based only on the dic3onary

Rare Words: Byte Pair Encoding

‣ Count bigram character cooccurrences

Sennrich et al. (2016)

‣ Merge the most frequent pair of
adjacent characters

‣ Input: a dic3onary of words represented as characters

‣ Final size = ini3al vocab + num merges. Omen do 10k - 30k merges

‣ Simpler procedure, based only on the dic3onary

Rare Words: Byte Pair Encoding

‣ Count bigram character cooccurrences

Sennrich et al. (2016)

‣ Merge the most frequent pair of
adjacent characters

‣ Input: a dic3onary of words represented as characters

‣ Final size = ini3al vocab + num merges. Omen do 10k - 30k merges

‣ Simpler procedure, based only on the dic3onary

‣ Most SOTA NMT systems use this on both source + target

Google’s NMT System

Wu et al. (2016)
‣ 8-layer LSTM encoder-decoder with a8en3on, word piece vocabulary of

8k-32k

Google’s NMT System

Wu et al. (2016)

Google’s NMT System

Wu et al. (2016)

Luong+ (2015) seq2seq ensemble with rare word handling: 37.5 BLEU
Google’s 32k word pieces: 38.95 BLEU

Google’s phrase-based system: 37.0 BLEU
English-French:

Google’s NMT System

Wu et al. (2016)

Luong+ (2015) seq2seq ensemble with rare word handling: 37.5 BLEU
Google’s 32k word pieces: 38.95 BLEU

Google’s phrase-based system: 37.0 BLEU
English-French:

Luong+ (2015) seq2seq ensemble with rare word handling: 23.0 BLEU
Google’s 32k word pieces: 24.2 BLEU

Google’s phrase-based system: 20.7 BLEU
English-German:

Human Evalua3on (En-Es)

Wu et al. (2016)

‣ Similar to human-level
performance on
English-Spanish

Google’s NMT System

Wu et al. (2016)

Google’s NMT System

Wu et al. (2016)

Gender is correct in GNMT
but not in PBMT

Google’s NMT System

Wu et al. (2016)

Gender is correct in GNMT
but not in PBMT

“sled”

Google’s NMT System

Wu et al. (2016)

Gender is correct in GNMT
but not in PBMT

“sled”

Google’s NMT System

Wu et al. (2016)

Gender is correct in GNMT
but not in PBMT

“sled”
“walker”

Backtransla3on
‣ Classical MT methods used a bilingual corpus of sentences B = (S, T) and

a large monolingual corpus T’ to train a language model. Can neural MT
do the same?

Sennrich et al. (2015)

Backtransla3on
‣ Classical MT methods used a bilingual corpus of sentences B = (S, T) and

a large monolingual corpus T’ to train a language model. Can neural MT
do the same?

Sennrich et al. (2015)

‣ Approach 1: force the system to
generate T’ as targets from null
inputs

Backtransla3on
‣ Classical MT methods used a bilingual corpus of sentences B = (S, T) and

a large monolingual corpus T’ to train a language model. Can neural MT
do the same?

Sennrich et al. (2015)

s1, t1

[null], t’1

[null], t’2

s2, t2
…

…

‣ Approach 1: force the system to
generate T’ as targets from null
inputs

Backtransla3on
‣ Classical MT methods used a bilingual corpus of sentences B = (S, T) and

a large monolingual corpus T’ to train a language model. Can neural MT
do the same?

Sennrich et al. (2015)

s1, t1

[null], t’1

[null], t’2

s2, t2
…

…

‣ Approach 1: force the system to
generate T’ as targets from null
inputs

‣ Approach 2: generate synthe3c
sources with a T->S machine
transla3on system (backtransla3on)

Backtransla3on
‣ Classical MT methods used a bilingual corpus of sentences B = (S, T) and

a large monolingual corpus T’ to train a language model. Can neural MT
do the same?

Sennrich et al. (2015)

s1, t1

[null], t’1

[null], t’2

s2, t2
…

…

‣ Approach 1: force the system to
generate T’ as targets from null
inputs

‣ Approach 2: generate synthe3c
sources with a T->S machine
transla3on system (backtransla3on)

s1, t1

MT(t’1), t’1

s2, t2
…

…
MT(t’2), t’2

Backtransla3on

Sennrich et al. (2015)

‣ parallelsynth: backtranslate training data; makes addi3onal noisy
source sentences which could be useful

‣ Gigaword: large monolingual English corpus

Transformers for MT

Recall: Self-A8en3on

Vaswani et al. (2017)

the movie was great

‣ Each word forms a “query” which then
computes a8en3on over each word

Recall: Self-A8en3on

Vaswani et al. (2017)

the movie was great

‣ Each word forms a “query” which then
computes a8en3on over each word

x4

Recall: Self-A8en3on

Vaswani et al. (2017)

the movie was great

‣ Each word forms a “query” which then
computes a8en3on over each word

x4

Recall: Self-A8en3on

Vaswani et al. (2017)

the movie was great

‣ Each word forms a “query” which then
computes a8en3on over each word

x4

x0
4

Recall: Self-A8en3on

Vaswani et al. (2017)

the movie was great

‣ Each word forms a “query” which then
computes a8en3on over each word

x4

x0
4

scalar↵i,j = softmax(x>
i xj)

Recall: Self-A8en3on

Vaswani et al. (2017)

the movie was great

‣ Each word forms a “query” which then
computes a8en3on over each word

x4

x0
4

scalar

vector = sum of scalar * vector

↵i,j = softmax(x>
i xj)

x0
i =

nX

j=1

↵i,jxj

Recall: Self-A8en3on

Vaswani et al. (2017)

the movie was great

‣ Each word forms a “query” which then
computes a8en3on over each word

‣ Mul3ple “heads” analogous to different convolu3onal filters. Use
parameters Wk and Vk to get different a8en3on values + transform vectors

x4

x0
4

scalar

vector = sum of scalar * vector

↵i,j = softmax(x>
i xj)

x0
i =

nX

j=1

↵i,jxj

Recall: Self-A8en3on

Vaswani et al. (2017)

the movie was great

‣ Each word forms a “query” which then
computes a8en3on over each word

‣ Mul3ple “heads” analogous to different convolu3onal filters. Use
parameters Wk and Vk to get different a8en3on values + transform vectors

x4

x0
4

scalar

vector = sum of scalar * vector

↵i,j = softmax(x>
i xj)

x0
i =

nX

j=1

↵i,jxj

↵k,i,j = softmax(x>
i Wkxj)

Recall: Self-A8en3on

Vaswani et al. (2017)

the movie was great

‣ Each word forms a “query” which then
computes a8en3on over each word

‣ Mul3ple “heads” analogous to different convolu3onal filters. Use
parameters Wk and Vk to get different a8en3on values + transform vectors

x4

x0
4

scalar

vector = sum of scalar * vector

↵i,j = softmax(x>
i xj)

x0
i =

nX

j=1

↵i,jxj

↵k,i,j = softmax(x>
i Wkxj) x0

k,i =
nX

j=1

↵k,i,jVkxj

Recall: Self-A8en3on

Vaswani et al. (2017)

the movie was great

‣ Each word forms a “query” which then
computes a8en3on over each word

‣ Mul3ple “heads” analogous to different convolu3onal filters. Use
parameters Wk and Vk to get different a8en3on values + transform vectors

x4

x0
4

scalar

vector = sum of scalar * vector

↵i,j = softmax(x>
i xj)

x0
i =

nX

j=1

↵i,jxj

↵k,i,j = softmax(x>
i Wkxj) x0

k,i =
nX

j=1

↵k,i,jVkxj

Transformers

Vaswani	et	al.	(2017)

the		movie		was			great

‣ Augment	word	embedding	with	posi=on	embeddings,	
each	dim	is	a	sine/cosine	wave	of	a	different	
frequency.	Closer	points	=	higher	dot	products

‣Works	essen=ally	as	well	as	just	encoding	posi=on	as	
a	one-hot	vector

the		movie		was			great

em
b(
1)

em
b(
2)

em
b(
3)

em
b(
4)

Transformers

Vaswani	et	al.	(2017)

‣ Encoder	and	decoder	are	both	transformers

‣ Decoder	consumes	the	previous	generated	
token	(and	a8ends	to	input),	but	has	no	
recurrent	state

Transformers

Vaswani	et	al.	(2017)

‣ Big	=	6	layers,	1000	dim	for	each	token,	16	heads,	
base	=	6	layers	+	other	params	halved

Visualiza=on

Vaswani	et	al.	(2017)

Visualiza=on

Vaswani	et	al.	(2017)

Takeaways

‣ Can	build	MT	systems	with	LSTM	encoder-decoders,	CNNs,	or	
transformers

‣Word	piece	/	byte	pair	models	are	really	effec=ve	and	easy	to	use

‣ State	of	the	art	systems	are	ge|ng	pre8y	good,	but	lots	of	challenges	
remain,	especially	for	low-resource	se|ngs

‣ Next	=me:	pre-trained	transformer	models	(BERT),	applied	to	other	tasks

