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Encoder-Decoder MT

Sutskever et al. (2014)‣ SOTA = 37.0 — not all that compe33ve…

‣ Sutskever seq2seq paper: first major applica3on of LSTMs to NLP

‣ Basic encoder-decoder with beam search



Encoder-Decoder MT
‣ Be8er model from seq2seq lectures: encoder-decoder with a8en3on 

and copying for rare words

the  movie  was   great
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Sutskever+ (2014) seq2seq ensemble: 34.8 BLEU

‣ But English-French is a really easy language pair and there’s tons of data 
for it! Does this approach work for anything harder?

Luong+ (2015) seq2seq ensemble with a8en3on and rare word handling: 
37.5 BLEU

‣ 12M sentence pairs
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Results: WMT English-German

‣ Not nearly as good in absolute BLEU, but not really comparable across 
languages

Classic phrase-based system: 20.7 BLEU

Luong+ (2014) seq2seq: 14 BLEU

‣ French, Spanish = easiest 
German, Czech = harder 
Japanese, Russian = hard (gramma3cally different, lots of morphology…)

Luong+ (2015) seq2seq ensemble with rare word handling: 23.0 BLEU

‣ 4.5M sentence pairs



MT Examples

Luong et al. (2015)

‣ NMT systems can hallucinate words, especially when not using a8en3on 
— phrase-based doesn’t do this

‣ best = with a8en3on, base = no a8en3on



MT Examples

Luong et al. (2015)

‣ best = with a8en3on, base = no a8en3on



Zhang et al. (2017)

‣ NMT can repeat itself if it gets confused (pH or pH)

‣ Phrase-based MT omen gets chunks right, may have more subtle 
ungramma3cali3es

MT Examples
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‣ Use Huffman encoding on a corpus, keep most common k (~10,000) 

character sequences for source and target
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Rare Words: Word Piece Models
‣ Use Huffman encoding on a corpus, keep most common k (~10,000) 

character sequences for source and target

‣ Captures common words and parts of rare words

Input: _the _eco tax _port i co _in   _Po nt - de - Bu is …

Output: _le _port ique _éco taxe _de _Pont - de - Bui s

‣ Subword structure may make it easier to translate

‣ Model balances transla3ng and translitera3ng without explicit switching
Wu et al. (2016)
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Rare Words: Byte Pair Encoding

‣ Count bigram character cooccurrences

Sennrich et al. (2016)

‣ Merge the most frequent pair of 
adjacent characters

‣ Input: a dic3onary of words represented as characters

‣ Final size = ini3al vocab + num merges. Omen do 10k - 30k merges

‣ Simpler procedure, based only on the dic3onary

‣ Most SOTA NMT systems use this on both source + target



Google’s NMT System

Wu et al. (2016)
‣ 8-layer LSTM encoder-decoder with a8en3on, word piece vocabulary of 

8k-32k 
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Wu et al. (2016)

Luong+ (2015) seq2seq ensemble with rare word handling: 37.5 BLEU
Google’s 32k word pieces: 38.95 BLEU

Google’s phrase-based system: 37.0 BLEU
English-French:

Luong+ (2015) seq2seq ensemble with rare word handling: 23.0 BLEU
Google’s 32k word pieces: 24.2 BLEU

Google’s phrase-based system: 20.7 BLEU
English-German:



Human Evalua3on (En-Es)

Wu et al. (2016)

‣ Similar to human-level 
performance on 
English-Spanish
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Google’s NMT System

Wu et al. (2016)

Gender is correct in GNMT 
but not in PBMT

“sled”
“walker”
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Backtransla3on
‣ Classical MT methods used a bilingual corpus of sentences B = (S, T) and 

a large monolingual corpus T’ to train a language model. Can neural MT 
do the same?

Sennrich et al. (2015)

s1, t1

[null], t’1

[null], t’2

s2, t2
…

…

‣ Approach 1: force the system to 
generate T’ as targets from null 
inputs

‣ Approach 2: generate synthe3c 
sources with a T->S machine 
transla3on system (backtransla3on)

s1, t1

MT(t’1), t’1

s2, t2
…

…
MT(t’2), t’2



Backtransla3on

Sennrich et al. (2015)

‣ parallelsynth: backtranslate training data; makes addi3onal noisy 
source sentences which could be useful

‣ Gigaword: large monolingual English corpus



Transformers for MT
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Transformers

Vaswani	et	al.	(2017)

the		movie		was			great

‣ Augment	word	embedding	with	posi=on	embeddings,	
each	dim	is	a	sine/cosine	wave	of	a	different	
frequency.	Closer	points	=	higher	dot	products

‣Works	essen=ally	as	well	as	just	encoding	posi=on	as	
a	one-hot	vector

the		movie		was			great
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Transformers

Vaswani	et	al.	(2017)

‣ Encoder	and	decoder	are	both	transformers

‣ Decoder	consumes	the	previous	generated	
token	(and	a8ends	to	input),	but	has	no	
recurrent	state



Transformers

Vaswani	et	al.	(2017)

‣ Big	=	6	layers,	1000	dim	for	each	token,	16	heads,	
base	=	6	layers	+	other	params	halved
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Takeaways

‣ Can	build	MT	systems	with	LSTM	encoder-decoders,	CNNs,	or	
transformers

‣Word	piece	/	byte	pair	models	are	really	effec=ve	and	easy	to	use

‣ State	of	the	art	systems	are	ge|ng	pre8y	good,	but	lots	of	challenges	
remain,	especially	for	low-resource	se|ngs

‣ Next	=me:	pre-trained	transformer	models	(BERT),	applied	to	other	tasks


