
Filter, Rank, and Transfer the Knowledge: Learning to Chat

Sina Jafarpour
Department of Computer Science

Princeton University
Princeton, NJ 08540

sina@cs.princeton.edu

Chris Burges
Microsoft Research
One Microsoft Way

Redmond, WA 98052
cburges@microsoft.com

Alan Ritter
Computer Science and Engineering

University of Washington
Seattle, WA 98195

aritter@cs.washington.edu

Abstract

Learning to chat is a fascinating machine learning task with many applications from user-modeling
to artificial intelligence. However, most of the work to date relies on designing large hard-wired
sets of rules. On the other hand, the growth of social networks on the web provides large quanti-
ties of conversational data, suggesting that the time is ripe to train chatbots in a more data driven
way. A first step is to learn to chat by ranking the response repository to provide responses that are
consistent with the user’s expectations. Here we use a three phase ranking approach for predicting
suitable responses to a query in a conversation. Sentences are first filtered, then efficiently ranked,
and then more precisely re-ranked in order to select the most suitable response. The filtering is done
using part-of-speech tagging, hierarchical clustering, and entropy analysis methods. The first phase
ranking is performed by generating a large set of high-level grammatical and conceptual features,
exploiting dictionaries and similarity measurement resources such as wikipedia similarity graphs,
and by ranking using a boosted regression tree (MART) classifier. The more precise (conceptual)
ranking is performed by designing more conceptual features obtained from similarity measurement
resources such as query refinement and suggestion systems, sentence paraphrasing techniques, LDA
topic modeling and structural clustering, and entropy analysis over wikipedia similarity graphs. The
sentences are then ranked according to the confidence of a Transfer AdaBoost classifier, trained
using transfer-learning methods in which a classification over a large corpus of noisy twitter and
live-journal data is considered as the source domain, and the collaborative ranking of actively col-
lected conversations, which are labeled in an online framework using user feedback, is considered as
the destination domain. We give results on the performance of each step, and on the accuracy of our
three phase ranking framework.

1 Introduction

The notion of designing automated chatbots is at least as old as Artificial Intelligence, since the Turing test requires
that machines be endowed with conversational skills. However, most chatbots designed to date (such as ELIZA and
A.L.I.C.E), are rule-based agents; a set of rules which drives the system’s responses is hard-wired into the system.
Although rule-based chatbots are suprisingly successful at engaging users for a while, they are brittle, with one false
move starkly revealing their limitations, and they are rigid, with no way of displaying the kind of understanding and
creativity that a truly engaging conversation requires.

Even just a decade ago, collecting large amounts of conversational data was impractical. Today however there is a
flood of accessible conversational data, arising from social networks such as Twitter, from Live-Journal blogs, and
from free semantic web applications. Moreover, new machine learning and ranking algorithms have been designed
to manipulate large data sets in practical applications such as information retrieval, natural language processing, and
web search ranking [1, 2]. In this paper, we investigate a framework for exploiting these large conversational data sets,
using machine learning techniques with the objective of learning to chat.

1



Learning to chat can be regarded as a collaborative filtering problem, in which the suitability of a response is evaluated
according to the extent that user likes or dislikes it, and our aim is to come up with an automatic ranking framework
consistent with user evaluation. Having provided the system with a large corpus of millions of conversations (in our
case twitter and live-journal data), we use an algorithm with three phases in order to rank the whole corpus and to
provide a suitable response to the user query1. The first phase, which we call “filtering”, filters the whole database of
twitter responses, shrinking the set of candidate responses from two million to approximately two thousand.

We discuss what characteristics define a good filtering function, and we compare three filtering approaches based on
part-of-speech tagging, hierarchical clustering, and entropy analysis. After identifying the filter set, following standard
information retrieval approaches, we use a first-phase ranking in order to select more relevant candidate responses from
the filter set. We designed a set of 300 features, including high-level features, grammatical features, and concept-based
features, for the first phase ranker. The ranking is done using boosted regression trees (the MART classifier)[1].

Filtering: 

Entropy 
Analysis 

NLP, 
JCluater 

First Phase Ranking 

Boosted Regression 
Trees (MART) 

Part of Speech Tagging, 
Hierarchical Clustering, 
DicGonary & Synonyms, 

Wikipedia Similarity Graphs 

Content‐Oriented 
Ranking 

Transfer  
AdaBoost 

Topic Modeling, 
Query Refinement, 

Sentence Paraphrasing,  
Wikipedia Thesaurus 

TwiQer/ 
Live Journal 

TwiQer/ 
Live Journal 

TwiQer/ 
Live Journal 

AcGvely  
Collected Data 

Winnow 
Online Learning 

Figure 1: Three ranking phases for generating a response.

1 

New Query 

Online 

Twi/er Query 1 

Twi/er Query 2 

. 

. 
Twi/er Query N 

Twi/er Response 1 
Twi/er Response2 

. 

. 
Twi/er Response N 

Conversa9on Repository 

One to Many Map 
Minimum  
Edit‐Distance 

Many To One Map 

Bucket Map 

Inverse Bucket Map 

Bucket‐Bucket Connec9on 

Figure 2: Mapping sentences into buckets for filtering.

Approaching the task of learning to chat by finding the best response in a large database of existing sentences may
thus be viewed as a ranking problem. The next step (which we do not address in this paper) would be to alter the
top ranked response to generate a better response, for example, by leveraging a model of the user’s interests, or of
the interests of users who had similar conversations. Here, we attempt to improve the selection of responses using a
collaborative filtering step. Thus first, the unlabeled (and very noisy) twitter and live-journal datasets are used in the
related classification task of distinguishing the exact response following a query, from a random response. A smaller
data set is then actively collected and labeled by users, for which we designed an online-rating web-application for
collecting data. We then use a transfer learning method (here, Transfer AdaBoost) [3, 4], in order to learn the destination
(ranking) domain, exploiting the large number of instances available in the source (classification) domain. Having
incorporated all two million source instances, we show that by then in addition exploiting the noise-free destination
data, the accuracy of the transfer learning ranker increases on the task.

2 Filtering and First-Phase Ranking

Given a query and a corpus of millions of candidate sentences, a mechanism is needed to efficiently remove irrelevant
sentences to reduce the set of candidate responses. A filtering is a many-to-one mapping from sentences to some

1We use the term “query” to denote the current sentence in a conversation, for which a response is desired, in analogy with the
ranking task in IR.

2



string patterns known as buckets. Intuitively, one measure for selecting appropriate filtering methods is the extent to
which either semantically related queries are mapped to the same bucket or their following responses are mapped to the
same bucket. This intuitive argument can be made more precise using McDiarmid’s inequality and tight concentration
arguments:

Theorem 1 For each query q∗, let Sq∗ = {(q1, r1), · · · , (qn, rn)} be a set of appropriate responses ri to q∗, coupled
with the true preceding queries qi in the repository, and let r̂q∗ be the most relevant response in Sq∗ . Suppose M
queries 〈q∗1 , · · · q∗M 〉 are sampled iid from a distribution D for filtering, and for each q∗i , ` samples 〈ri

1, · · · , ri
`〉 are

drawn iid from a distribution Dq∗
i
. Finally let B denote the bucket map, and suppose there exists a positive θ such that

for all query q∗i ,

max

{
Pr
ri

j

[
B(ri

j) = B(r̂q∗
i
)
]
,Pr
rj

i

[
B(qi

j) = B(q∗i )
]}
≥ θ.

Then with overwhelming probability, on average, each query has
(
θ −

√
log M
`M

)
` suitable responses captured by

mapping .

We investigated three heuristics for selecting the filtering function. In the first approach we used Part of Speech
Tagging and Natural Language Processing methods [5]. Each sentence is first mapped to its chunked POS tag, and
is then encoded to a binary string using Huffman coding. We use Huffman coding because it provides a hierarchical
representation of the tags, i.e. tags with the same frequency (as a heuristic for similarity) have similar binary encoding.
The second heuristic uses JCluster [6]. JCluster is a recursive algorithm for generating hierarchical clustering of the
words. Let ABC denote trigrams in the corpus and b denotes the cluster of B. At each iteration JCluster splits each
cluster to two sub-clusters so that P (C|b) has minimal entropy. For instance, the words “you” and “u” are considered
similar by JCluster. The 1-JCLuster bucket-map of each sentence can then be computed efficiently as follows: for each
word of the sentence, the corresponding JCLuster index is extracted, and truncated to be limited to its most significant
bits. The reason that 1-JCluster bucket-mapping is used is first to obtain a sufficiently large number of candidate
sentences and second, we observe empirically that there exist a large number of similar queries that have the same
1-JCLuster representation but whose 2-JCLuster representation differs, which decreases the quality of the candidate
responses.

The last heuristic combines an entropy analysis with hierarchical clustering. The major difference between this ap-
proach and the previous approaches is that in this approach a bucket map is many-to-many mapping, i.e. a set of binary
strings, while in the previous approaches a bucket-map was always a single binary string. In this approach we first
remove the common, low entropy words from each sentence. These words are then mapped to their JClusters indices
which are truncated to their seven most-significant bits. Experimental results suggest that the third approach almost
always provides more suitable responses comparing to the first two heuristics. Having performed the filtering to re-
move a large fraction of irrelevant sentences, a boosted regression tree classifier (MART) is used for finding suitable
responses. A set of informative features were designed to train the MART classifier so that the ranking of the candidate
filtered responses for a new query can be done using the confidence of the classifier. Our feature set incorporated the
grammatical properties of the (query/response) pair, such as part of speech tagging, the parsing tree, the hierarchical
clustering, and high-level features (such as whether the query is a question and the response is a statement, etc), and
content-based features exploiting public resources such as dictionaries and synonyms, and also wikipedia similarity
graphs.

The final problem is to provide labeling for training examples. We use the following method for labeling instances: for
each query, its true response (the sentence following that in the twitter conversation) is labeled positive, and a random
response is selected and labeled as negative. The labeled set is then divided uniformly into training, cross validation
and test set. Having run the MART algorithm with 200 rounds, we observed that the test error continuously drops
from 50% to 32% (which is 36% relative improvement); furthermore, no sign of over-fitting is observed. However,
having tried the same learning task with 10 random negative responses, rather than just one, for each query, the test
error dropped from 9% of random guess to 7.5% (which is only 16% relative improvement). Hence, although the test
error still drops, which is a good news for the first-phase ranking, the improvement over the random guess decays as
the number of random negative instances increases. The main reasons for this behavior are (1) the twitter data is very
noisy; there are lots of generic responses, outliers, inconsistencies and errors in this labeling approach, and (2) chatting
is a different task from distinguishing a random twitter response from the true response (although the two tasks are
related). We tried to solve the first difficulty by designing an active data-collecting web application, and the second
issue by using transfer learning methods.

3



Figure 3: Test error vs. number of trees for MART(first
phase ranker)

Figure 4: Winnow (online learning) generaliza-
tion error vs. round

Figure 5: TrAdaBoost(transfer learning)

Figure 6: Generalization error of different phases of the ranking process

3 Collaborative Filtering, Online Learning, and Transfer Learning

To overcome the difficulties with Twitter and Live-Journal data in terms of noise and outlier effects in labeling, we
designed a web-application game in order to actively collect less noisy training data. In this game, a query (with some
conversation history), and a candidate response is provided to the user. Note that the main goal of this game is just
collecting more accurate conversational data for the content-oriented learning phase. The web application provides a
query and a candidate response at real-time. As a result, even though using MART might provide better responses,
due to the necessity of real-time ranking and online learning requires fast and online learning methods, the winnow
algorithm [7], an online multiplicative update algorithm which tends to be both fast and robust, is used for online
candidate generation. The user then presses the like or dislike button. If dislike is pressed, the online classifier is
updated and another response is generated, and if the user dislikes three such responses, then the user is asked to type a
new, suitable response. If on the other hand the user liked one of the three responses, then the previous query is added
to the chat history, and the new response becomes the next query. The online learning classifier is always updated
after the user’s action. Since the data is collected during an interactive game with labelers, collecting a large number
of labeled examples requires a server managing the winnow algorithm and serving all human labelers simultaneously.
This is where the term collaborative learning comes from. The Winnow is updated from all human labelers at the
same time, and managing parallel sessions not only helps in speeding up the data collection rate, but it also provides
advantages in training the winnow classifier, making the game more fun for the users. We enlisted the help of our local
colleagues to play the game and as a result collected one thousand labeled samples.

4



Table 1: Some Examples of Automatically Generated Responses

Query Suggested Response
I play football a lot how long have you been playing ? i ’ve been on 2 years

I like Oranges unless you eat like 10 acre of them at one time ... no
How is the weather in Seattle? perfect for a day off ...

The question naturally follows: is it possible to exploit the large number of twitter instances, together with the data
from the web game, in order to train a more accurate classifier? We propose a knowledge transfer solution for this
question using the Transfer AdaBoost algorithm. Transfer learning tries to exploit the available information provided
in one domain, known as the source domain, in order to improve or facilitate the task of learning another domain,
called destination domain. In our chat-bot example, the source domain is the set of twitter and live-journal data, and
the destination domain is the set of actively collected conversations.

Having identified the source domain, and the destination domain, we design a set of content-oriented features in order
to capture as much information as possible between a query and the possible responses. The features include the first-
phase ranking features as well as features learned from the topic modeling of a fresh twitter corpus using HMM and
LDA Analyses [8], and extracted from query refinement tables and sentence paraphrasing techniques [9]. To train the
TrAdaboost, we use 400 positive and 400 negative actively sampled conversations as the destination domain, and 2
million twitter conversations as the source domain. The destination set is then randomly divided to training and test
sets with the same size. It turns out that with 2000 random twitter data the test error of the TrAdaBoost algorithm
increases. However, whenever the whole twitter corpus is used, the error over the test set drops to 26.4%, comparing
to 30.2% of not using knowledge transfer on a set of 200 positive and 200 negative human-labeled instances. Having
trained TrAdaBoost, given a new query, the response is generated by first filtering the twitter corpus, then picking 100
sentences for which the trained MART algorithm has the highest confidence, and among them finding the sentence for
which the TrAdaBoost has the highest confidence.

4 Conclusion

In this paper, we modeled the learning-to-chat problem as a collaborative ranking task, and we designed a triphase
ranking framework consisting of filtering, first-phase ranking using MART, and conceptual ranking using Transfer
AdaBoost. At each step, designing informative but not restrictive features play a key role, and to accomplish this a
large variety of different similarity resources have been used. Like any other machine learning task, availability of a
large corpus of conversational instances will lead to better ranking results and possibly more suitable responses. The
Twitter data is extremely noisy and our work leads us to believe that training chat-bots with less noisy, massive training
sets should further improve performance. A complementary task to collaborative filtering is user modeling, which is
likely to provide valuable information regarding the response to be chosen. How to build such user models in response
to the user’s interaction with the chatbot is an interesting direction for future research.

References
[1] J. Friedman, “Greedy Function Approximation: A Gradient Boosting Machine,” Annals of Statistics, Vol. 29, PP. 1189-1232,

1999.

[2] C. Burges, T. Shaked, E. Renshaw, M. Deeds, N. Hamilton, and G. Hullender, “Learning to rank using gradient descent,” in
ICML, pp. 89-96, 2005.

[3] S. Pan and Q. Yang, “A Survey on Transfer Learning,” IEEE Transactions on Knowledge and Data Engineering (IEEE
TKDE), 2009.

[4] W. Dai, Q. Yang, G. Xue, and Y. Yu, “Boosting for Transfer Learning,” ICML’07, PP. 193 - 200, 2007.

[5] A. Bies, M. Ferguson, K. Katz, R. Macintyre, M. Contributors, V. Tredinnick, G. Kim, M. Marcinkiewicz, and B. Schasberger,
“Bracketing Guidelines for Treebank II Style Penn Treebank Project,” 1995.

[6] J. Goodman, “JCLUSTER, a fast simple clustering program that produces hierarchical, binary branching, tree structured
clusters.,” http://research.microsoft.com/en-us/um/people/joshuago/, 2009.

5



[7] N. Littlestone, “Learning Quickly When Irrelevant Attributes Abound: A New Linear-threshold Algorithm,” Machine Learn-
ing PP. 285-318, 1998.

[8] D. Blei, A. Ng, and M M. Jordan, “Latent Dirichlet Allocation,” JMLR, Vol. 3, PP. 993-1022, 2003.

[9] S. Cucerzan and R. White, “Query suggestion based on user landing pages,” ACM SIGIR, 2007.

[10] S. Young, M. Gasic, S. Keizer, F. Mairesse, J. Schatzmann, B. Thomson, and K. Yu, “The Hidden Information State
Model: a practical framework for POMDP-based spoken dialogue management,” Computer Speech and Language.
http://mi.eng.cam.ac.uk/ farm2/papers/ygkm09.pdf, 2009.

[11] K. Church, “A stochastic parts program and noun phrase parser for un- restricted texts,” Proceedings of the Second Conference
on Applied Natural Language Processing, 1988.

[12] S. DeRose, “Grammatical category disambiguation by statistical optimization,” Computational Linguistics, Vol. 14, 1988.

[13] T. Hufmann, “Unsupervised Learning by Probabilistic Latent Semantic Analysis,” Machine Learning Journal, Vol. 42, PP.
177-196., 2001.

[14] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 2003.

[15] J. Weizenbaum, “ELIZA a computer program for the study of natural language communication between man and machine,”
Communications of the ACM, Vol.9 PP. 36-45, January 1966.

[16] R. Wallace, “From Eliza to A.L.I.C.E,” http://www.alicebot.org/articles/wallace/eliza.html, 2004.

[17] Y. Freund and R. Schapire, “Game theory, On-line prediction and Boosting,” In Proceedings of the Ninth Annual Conference
on Computational Learning Theory, PP. 325-332, 1996.

[18] Q. Wu, C. Burges, K. Svore, and J. Gao, “Ranking, Boosting, and Model Adaptation,” in Tecnical Report, MSR-TR-2008-109,
October 2008.

[19] C. Burges, “A tutorial on Support Vector Machines for pattern recognition,” Data Mining and Knowledge Discovery, Vol 2,
PP. 955-974, 1998.

[20] R. Caruana, S. Baluja, and T. Mitchell, “Using the Future to Sort Out the Present: Rankprop and Multitask Learning for
Medical Risk Evaluation,” Advances in Neural Information Processing Systems (NIPS ’95), 1995.

[21] G.Cavallant, N. Cesa-Bianchi, and C. Gentile, “Linear classification and selective sampling under low noise conditions,”
Advances in Neural Information Processing Systems, 2009.

[22] N. Craswell and M. Szummer, “Random walks on the click graph,” SIGIR ’07: Proceedings of the 30th annual international
ACM SIGIR conference on Research and development in information retrieval ), pp. 239-246, 2007.

[23] W. Dolan and C. Brockett, “Automatically Constructing a Corpus of Sentential Paraphrases,” Third International Workshop
on Paraphrasing (IWP2005), Asia Federation of Natural Language Processing, 2005.

6


